第三部分 運動學(xué)

第一講 基本知識介紹

一. 基本概念

1.  質(zhì)點

2.  參照物

3.  參照系——固連于參照物上的坐標(biāo)系(解題時要記住所選的是參照系,而不僅是一個點)

4.絕對運動,相對運動,牽連運動:v=v+v 

二.運動的描述

1.位置:r=r(t) 

2.位移:Δr=r(t+Δt)-r(t)

3.速度:v=limΔt→0Δr/Δt.在大學(xué)教材中表述為:v=dr/dt, 表示r對t 求導(dǎo)數(shù)

5.以上是運動學(xué)中的基本物理量,也就是位移、位移的一階導(dǎo)數(shù)、位移的二階導(dǎo)數(shù)?墒

三階導(dǎo)數(shù)為什么不是呢?因為牛頓第二定律是F=ma,即直接和加速度相聯(lián)系。(a對t的導(dǎo)數(shù)叫“急動度”。)

6.由于以上三個量均為矢量,所以在運算中用分量表示一般比較好

三.等加速運動

v(t)=v0+at           r(t)=r0+v0t+1/2 at

 一道經(jīng)典的物理問題:二次世界大戰(zhàn)中物理學(xué)家曾經(jīng)研究,當(dāng)大炮的位置固定,以同一速度v0沿各種角度發(fā)射,問:當(dāng)飛機在哪一區(qū)域飛行之外時,不會有危險?(注:結(jié)論是這一區(qū)域為一拋物線,此拋物線是所有炮彈拋物線的包絡(luò)線。此拋物線為在大炮上方h=v2/2g處,以v0平拋物體的軌跡。) 

練習(xí)題:

一盞燈掛在離地板高l2,天花板下面l1處。燈泡爆裂,所有碎片以同樣大小的速度v 朝各個方向飛去。求碎片落到地板上的半徑(認為碎片和天花板的碰撞是完全彈性的,即切向速度不變,法向速度反向;碎片和地板的碰撞是完全非彈性的,即碰后靜止。)

四.剛體的平動和定軸轉(zhuǎn)動

1. 我們講過的圓周運動是平動而不是轉(zhuǎn)動 

  2.  角位移φ=φ(t), 角速度ω=dφ/dt , 角加速度ε=dω/dt

 3.  有限的角位移是標(biāo)量,而極小的角位移是矢量

4.  同一剛體上兩點的相對速度和相對加速度 

兩點的相對距離不變,相對運動軌跡為圓弧,VA=VB+VAB,在AB連線上

投影:[VA]AB=[VB]AB,aA=aB+aAB,aAB=,anAB+,aτAB, ,aτAB垂直于AB,,anAB=VAB2/AB 

例:A,B,C三質(zhì)點速度分別V,VB  ,VC      

求G的速度。

五.課后習(xí)題:

一只木筏離開河岸,初速度為V,方向垂直于岸邊,航行路線如圖。經(jīng)過時間T木筏劃到路線上標(biāo)有符號處。河水速度恒定U用作圖法找到在2T,3T,4T時刻木筏在航線上的確切位置。

五、處理問題的一般方法

(1)用微元法求解相關(guān)速度問題

例1:如圖所示,物體A置于水平面上,A前固定一滑輪B,高臺上有一定滑輪D,一根輕繩一端固定在C點,再繞過B、D,BC段水平,當(dāng)以恒定水平速度v拉繩上的自由端時,A沿水平面前進,求當(dāng)跨過B的兩段繩子的夾角為α?xí)r,A的運動速度。

(vA

(2)拋體運動問題的一般處理方法

  1. 平拋運動
  2. 斜拋運動
  3. 常見的處理方法

(1)將斜上拋運動分解為水平方向的勻速直線運動和豎直方向的豎直上拋運動

(2)將沿斜面和垂直于斜面方向作為x、y軸,分別分解初速度和加速度后用運動學(xué)公式解題

(3)將斜拋運動分解為沿初速度方向的斜向上的勻速直線運動和自由落體運動兩個分運動,用矢量合成法則求解

例2:在擲鉛球時,鉛球出手時距地面的高度為h,若出手時的速度為V0,求以何角度擲球時,水平射程最遠?最遠射程為多少?

(α=、 x=

第二講 運動的合成與分解、相對運動

(一)知識點點撥

  1. 力的獨立性原理:各分力作用互不影響,單獨起作用。
  2. 運動的獨立性原理:分運動之間互不影響,彼此之間滿足自己的運動規(guī)律
  3. 力的合成分解:遵循平行四邊形定則,方法有正交分解,解直角三角形等
  4. 運動的合成分解:矢量合成分解的規(guī)律方法適用
    1. 位移的合成分解 B.速度的合成分解 C.加速度的合成分解

參考系的轉(zhuǎn)換:動參考系,靜參考系

相對運動:動點相對于動參考系的運動

絕對運動:動點相對于靜參考系統(tǒng)(通常指固定于地面的參考系)的運動

牽連運動:動參考系相對于靜參考系的運動

(5)位移合成定理:SA對地=SAB+SB對地

速度合成定理:V絕對=V相對+V牽連

加速度合成定理:a絕對=a相對+a牽連

(二)典型例題

(1)火車在雨中以30m/s的速度向南行駛,雨滴被風(fēng)吹向南方,在地球上靜止的觀察者測得雨滴的徑跡與豎直方向成21。角,而坐在火車里乘客看到雨滴的徑跡恰好豎直方向。求解雨滴相對于地的運動。

提示:矢量關(guān)系入圖

答案:83.7m/s

(2)某人手拿一只停表,上了一次固定樓梯,又以不同方式上了兩趟自動扶梯,為什么他可以根據(jù)測得的數(shù)據(jù)來計算自動扶梯的臺階數(shù)?

提示:V人對梯=n1/t1

      V梯對地=n/t2

      V人對地=n/t3

V人對地= V人對梯+ V梯對地

答案:n=t2t3n1/(t2-t3)t1

(3)某人駕船從河岸A處出發(fā)橫渡,如果使船頭保持跟河岸垂直的方向航行,則經(jīng)10min后到達正對岸下游120m的C處,如果他使船逆向上游,保持跟河岸成а角的方向航行,則經(jīng)過12.5min恰好到達正對岸的B處,求河的寬度。

提示:120=V水*600

        D=V船*600

 答案:200m

(4)一船在河的正中航行,河寬l=100m,流速u=5m/s,并在距船s=150m的下游形成瀑布,為了使小船靠岸時,不至于被沖進瀑布中,船對水的最小速度為多少?

提示:如圖船航行

答案:1.58m/s

(三)同步練習(xí)

1.一輛汽車的正面玻璃一次安裝成與水平方向傾斜角為β1=30°,另一次安裝成傾角為β2=15°。問汽車兩次速度之比為多少時,司機都是看見冰雹都是以豎直方向從車的正面玻璃上彈開?(冰雹相對地面是豎直下落的)

2、模型飛機以相對空氣v=39km/h的速度繞一個邊長2km的等邊三角形飛行,設(shè)風(fēng)速u = 21km/h ,方向與三角形的一邊平行并與飛機起飛方向相同,試求:飛機繞三角形一周需多少時間?

3.圖為從兩列蒸汽機車上冒出的兩股長幅氣霧拖尾的照片(俯視)。兩列車沿直軌道分別以速度v1=50km/h和v2=70km/h行駛,行駛方向如箭頭所示,求風(fēng)速。

4、細桿AB長L ,兩端分別約束在x 、 y軸上運動,(1)試求桿上與A點相距aL(0< a <1)的P點運動軌跡;(2)如果vA為已知,試求P點的x 、 y向分速度vPx和vPy對桿方位角θ的函數(shù)。

(四)同步練習(xí)提示與答案

1、提示:利用速度合成定理,作速度的矢量三角形。答案為:3。

2、提示:三角形各邊的方向為飛機合速度的方向(而非機頭的指向);

第二段和第三段大小相同。

參見右圖,顯然:

v2 =  + u2 - 2vucos120°

可解出 v = 24km/h 。

答案:0.2hour(或12min.)。

3、提示:方法與練習(xí)一類似。答案為:3

4、提示:(1)寫成參數(shù)方程后消參數(shù)θ。

(2)解法有講究:以A端為參照, 則桿上各點只繞A轉(zhuǎn)動。但鑒于桿子的實際運動情形如右圖,應(yīng)有v = vAcosθ,v轉(zhuǎn) = vA,可知B端相對A的轉(zhuǎn)動線速度為:v轉(zhuǎn) + vAsinθ=  。

P點的線速度必為  = v 

所以 vPx = vcosθ+ vAx ,vPy = vAy - vsinθ

答案:(1) +  = 1 ,為橢圓;(2)vPx = avActgθ ,vPy =(1 - a)vA

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中物理 來源: 題型:閱讀理解

第六部分 振動和波

第一講 基本知識介紹

《振動和波》的競賽考綱和高考要求有很大的不同,必須做一些相對詳細的補充。

一、簡諧運動

1、簡諧運動定義:= -k             

凡是所受合力和位移滿足①式的質(zhì)點,均可稱之為諧振子,如彈簧振子、小角度單擺等。

諧振子的加速度:= -

2、簡諧運動的方程

回避高等數(shù)學(xué)工具,我們可以將簡諧運動看成勻速圓周運動在某一條直線上的投影運動(以下均看在x方向的投影),圓周運動的半徑即為簡諧運動的振幅A 。

依據(jù):x = -mω2Acosθ= -mω2

對于一個給定的勻速圓周運動,m、ω是恒定不變的,可以令:

2 = k 

這樣,以上兩式就符合了簡諧運動的定義式①。所以,x方向的位移、速度、加速度就是簡諧運動的相關(guān)規(guī)律。從圖1不難得出——

位移方程: = Acos(ωt + φ)                                        ②

速度方程: = -ωAsin(ωt +φ)                                     ③

加速度方程:= -ω2A cos(ωt +φ)                                   ④

相關(guān)名詞:(ωt +φ)稱相位,φ稱初相。

運動學(xué)參量的相互關(guān)系:= -ω2

A = 

tgφ= -

3、簡諧運動的合成

a、同方向、同頻率振動合成。兩個振動x1 = A1cos(ωt +φ1)和x2 = A2cos(ωt +φ2) 合成,可令合振動x = Acos(ωt +φ) ,由于x = x1 + x2 ,解得

A =  ,φ= arctg 

顯然,當(dāng)φ2-φ1 = 2kπ時(k = 0,±1,±2,…),合振幅A最大,當(dāng)φ2-φ1 = (2k + 1)π時(k = 0,±1,±2,…),合振幅最小。

b、方向垂直、同頻率振動合成。當(dāng)質(zhì)點同時參與兩個垂直的振動x = A1cos(ωt + φ1)和y = A2cos(ωt + φ2)時,這兩個振動方程事實上已經(jīng)構(gòu)成了質(zhì)點在二維空間運動的軌跡參數(shù)方程,消去參數(shù)t后,得一般形式的軌跡方程為

+-2cos(φ2-φ1) = sin22-φ1)

顯然,當(dāng)φ2-φ1 = 2kπ時(k = 0,±1,±2,…),有y = x ,軌跡為直線,合運動仍為簡諧運動;

當(dāng)φ2-φ1 = (2k + 1)π時(k = 0,±1,±2,…),有+= 1 ,軌跡為橢圓,合運動不再是簡諧運動;

當(dāng)φ2-φ1取其它值,軌跡將更為復(fù)雜,稱“李薩如圖形”,不是簡諧運動。

c、同方向、同振幅、頻率相近的振動合成。令x1 = Acos(ω1t + φ)和x2 = Acos(ω2t + φ) ,由于合運動x = x1 + x2 ,得:x =(2Acost)cos(t +φ)。合運動是振動,但不是簡諧運動,稱為角頻率為的“拍”現(xiàn)象。

4、簡諧運動的周期

由②式得:ω=  ,而圓周運動的角速度和簡諧運動的角頻率是一致的,所以

T = 2π                                                      

5、簡諧運動的能量

一個做簡諧運動的振子的能量由動能和勢能構(gòu)成,即

mv2 + kx2 = kA2

注意:振子的勢能是由(回復(fù)力系數(shù))k和(相對平衡位置位移)x決定的一個抽象的概念,而不是具體地指重力勢能或彈性勢能。當(dāng)我們計量了振子的抽象勢能后,其它的具體勢能不能再做重復(fù)計量。

6、阻尼振動、受迫振動和共振

和高考要求基本相同。

二、機械波

1、波的產(chǎn)生和傳播

產(chǎn)生的過程和條件;傳播的性質(zhì),相關(guān)參量(決定參量的物理因素)

2、機械波的描述

a、波動圖象。和振動圖象的聯(lián)系

b、波動方程

如果一列簡諧波沿x方向傳播,振源的振動方程為y = Acos(ωt + φ),波的傳播速度為v ,那么在離振源x處一個振動質(zhì)點的振動方程便是

y = Acos〔ωt + φ - ·2π〕= Acos〔ω(t - )+ φ〕

這個方程展示的是一個復(fù)變函數(shù)。對任意一個時刻t ,都有一個y(x)的正弦函數(shù),在x-y坐標(biāo)下可以描繪出一個瞬時波形。所以,稱y = Acos〔ω(t - )+ φ〕為波動方程。

3、波的干涉

a、波的疊加。幾列波在同一介質(zhì)種傳播時,能獨立的維持它們的各自形態(tài)傳播,在相遇的區(qū)域則遵從矢量疊加(包括位移、速度和加速度的疊加)。

b、波的干涉。兩列波頻率相同、相位差恒定時,在同一介質(zhì)中的疊加將形成一種特殊形態(tài):振動加強的區(qū)域和振動削弱的區(qū)域穩(wěn)定分布且彼此隔開。

我們可以用波程差的方法來討論干涉的定量規(guī)律。如圖2所示,我們用S1和S2表示兩個波源,P表示空間任意一點。

當(dāng)振源的振動方向相同時,令振源S1的振動方程為y1 = A1cosωt ,振源S1的振動方程為y2 = A2cosωt ,則在空間P點(距S1為r1 ,距S2為r2),兩振源引起的分振動分別是

y1′= A1cos〔ω(t ? )〕

y2′= A2cos〔ω(t ? )〕

P點便出現(xiàn)兩個頻率相同、初相不同的振動疊加問題(φ1 =  ,φ2 = ),且初相差Δφ= (r2 – r1)。根據(jù)前面已經(jīng)做過的討論,有

r2 ? r1 = kλ時(k = 0,±1,±2,…),P點振動加強,振幅為A1 + A2 ;

r2 ? r1 =(2k ? 1)時(k = 0,±1,±2,…),P點振動削弱,振幅為│A1-A2│。

4、波的反射、折射和衍射

知識點和高考要求相同。

5、多普勒效應(yīng)

當(dāng)波源或者接受者相對與波的傳播介質(zhì)運動時,接收者會發(fā)現(xiàn)波的頻率發(fā)生變化。多普勒效應(yīng)的定量討論可以分為以下三種情況(在討論中注意:波源的發(fā)波頻率f和波相對介質(zhì)的傳播速度v是恒定不變的)——

a、只有接收者相對介質(zhì)運動(如圖3所示)

設(shè)接收者以速度v1正對靜止的波源運動。

如果接收者靜止在A點,他單位時間接收的波的個數(shù)為f ,

當(dāng)他迎著波源運動時,設(shè)其在單位時間到達B點,則= v1 ,、

在從A運動到B的過程中,接收者事實上“提前”多接收到了n個波

n = 

顯然,在單位時間內(nèi),接收者接收到的總的波的數(shù)目為:f + n = f ,這就是接收者發(fā)現(xiàn)的頻率f。即

f

顯然,如果v1背離波源運動,只要將上式中的v1代入負值即可。如果v1的方向不是正對S ,只要將v1出正對的分量即可。

b、只有波源相對介質(zhì)運動(如圖4所示)

設(shè)波源以速度v2正對靜止的接收者運動。

如果波源S不動,在單位時間內(nèi),接收者在A點應(yīng)接收f個波,故S到A的距離:= fλ 

在單位時間內(nèi),S運動至S′,即= v2 。由于波源的運動,事實造成了S到A的f個波被壓縮在了S′到A的空間里,波長將變短,新的波長

λ′= 

而每個波在介質(zhì)中的傳播速度仍為v ,故“被壓縮”的波(A接收到的波)的頻率變?yōu)?/p>

f2 = 

當(dāng)v2背離接收者,或有一定夾角的討論,類似a情形。

c、當(dāng)接收者和波源均相對傳播介質(zhì)運動

當(dāng)接收者正對波源以速度v1(相對介質(zhì)速度)運動,波源也正對接收者以速度v2(相對介質(zhì)速度)運動,我們的討論可以在b情形的過程上延續(xù)…

f3 =  f2 = 

關(guān)于速度方向改變的問題,討論類似a情形。

6、聲波

a、樂音和噪音

b、聲音的三要素:音調(diào)、響度和音品

c、聲音的共鳴

第二講 重要模型與專題

一、簡諧運動的證明與周期計算

物理情形:如圖5所示,將一粗細均勻、兩邊開口的U型管固定,其中裝有一定量的水銀,汞柱總長為L 。當(dāng)水銀受到一個初始的擾動后,開始在管中振動。忽略管壁對汞的阻力,試證明汞柱做簡諧運動,并求其周期。

模型分析:對簡諧運動的證明,只要以汞柱為對象,看它的回復(fù)力與位移關(guān)系是否滿足定義式①,值得注意的是,回復(fù)力系指振動方向上的合力(而非整體合力)。當(dāng)簡諧運動被證明后,回復(fù)力系數(shù)k就有了,求周期就是順理成章的事。

本題中,可設(shè)汞柱兩端偏離平衡位置的瞬時位移為x 、水銀密度為ρ、U型管橫截面積為S ,則次瞬時的回復(fù)力

ΣF = ρg2xS = x

由于L、m為固定值,可令: = k ,而且ΣF與x的方向相反,故汞柱做簡諧運動。

周期T = 2π= 2π

答:汞柱的周期為2π 。

學(xué)生活動:如圖6所示,兩個相同的柱形滾輪平行、登高、水平放置,繞各自的軸線等角速、反方向地轉(zhuǎn)動,在滾輪上覆蓋一塊均質(zhì)的木板。已知兩滾輪軸線的距離為L 、滾輪與木板之間的動摩擦因素為μ、木板的質(zhì)量為m ,且木板放置時,重心不在兩滾輪的正中央。試證明木板做簡諧運動,并求木板運動的周期。

思路提示:找平衡位置(木板重心在兩滾輪中央處)→ú力矩平衡和Σ?F6= 0結(jié)合求兩處彈力→ú求摩擦力合力…

答案:木板運動周期為2π 。

鞏固應(yīng)用:如圖7所示,三根長度均為L = 2.00m地質(zhì)量均勻直桿,構(gòu)成一正三角形框架ABC,C點懸掛在一光滑水平軸上,整個框架可繞轉(zhuǎn)軸轉(zhuǎn)動。桿AB是一導(dǎo)軌,一電動松鼠可在導(dǎo)軌上運動,F(xiàn)觀察到松鼠正在導(dǎo)軌上運動,而框架卻靜止不動,試討論松鼠的運動是一種什么樣的運動。

解說:由于框架靜止不動,松鼠在豎直方向必平衡,即:松鼠所受框架支持力等于松鼠重力。設(shè)松鼠的質(zhì)量為m ,即:

N = mg                            ①

再回到框架,其靜止平衡必滿足框架所受合力矩為零。以C點為轉(zhuǎn)軸,形成力矩的只有松鼠的壓力N、和松鼠可能加速的靜摩擦力f ,它們合力矩為零,即:

MN = Mf

現(xiàn)考查松鼠在框架上的某個一般位置(如圖7,設(shè)它在導(dǎo)軌方向上距C點為x),上式即成:

N·x = f·Lsin60°                 ②

解①②兩式可得:f = x ,且f的方向水平向左。

根據(jù)牛頓第三定律,這個力就是松鼠在導(dǎo)軌方向上的合力。如果我們以C在導(dǎo)軌上的投影點為參考點,x就是松鼠的瞬時位移。再考慮到合力與位移的方向因素,松鼠的合力與位移滿足關(guān)系——

= -k

其中k =  ,對于這個系統(tǒng)而言,k是固定不變的。

顯然這就是簡諧運動的定義式。

答案:松鼠做簡諧運動。

評說:這是第十三屆物理奧賽預(yù)賽試題,問法比較模糊。如果理解為定性求解,以上答案已經(jīng)足夠。但考慮到原題中還是有定量的條件,所以做進一步的定量運算也是有必要的。譬如,我們可以求出松鼠的運動周期為:T = 2π = 2π = 2.64s 。

二、典型的簡諧運動

1、彈簧振子

物理情形:如圖8所示,用彈性系數(shù)為k的輕質(zhì)彈簧連著一個質(zhì)量為m的小球,置于傾角為θ

查看答案和解析>>

科目:高中物理 來源: 題型:閱讀理解

第二部分  牛頓運動定律

第一講 牛頓三定律

一、牛頓第一定律

1、定律。慣性的量度

2、觀念意義,突破“初態(tài)困惑”

二、牛頓第二定律

1、定律

2、理解要點

a、矢量性

b、獨立作用性:ΣF → a ,ΣFx → ax 

c、瞬時性。合力可突變,故加速度可突變(與之對比:速度和位移不可突變);牛頓第二定律展示了加速度的決定式(加速度的定義式僅僅展示了加速度的“測量手段”)。

3、適用條件

a、宏觀、低速

b、慣性系

對于非慣性系的定律修正——引入慣性力、參與受力分析

三、牛頓第三定律

1、定律

2、理解要點

a、同性質(zhì)(但不同物體)

b、等時效(同增同減)

c、無條件(與運動狀態(tài)、空間選擇無關(guān))

第二講 牛頓定律的應(yīng)用

一、牛頓第一、第二定律的應(yīng)用

單獨應(yīng)用牛頓第一定律的物理問題比較少,一般是需要用其解決物理問題中的某一個環(huán)節(jié)。

應(yīng)用要點:合力為零時,物體靠慣性維持原有運動狀態(tài);只有物體有加速度時才需要合力。有質(zhì)量的物體才有慣性。a可以突變而v、s不可突變。

1、如圖1所示,在馬達的驅(qū)動下,皮帶運輸機上方的皮帶以恒定的速度向右運動。現(xiàn)將一工件(大小不計)在皮帶左端A點輕輕放下,則在此后的過程中(      

A、一段時間內(nèi),工件將在滑動摩擦力作用下,對地做加速運動

B、當(dāng)工件的速度等于v時,它與皮帶之間的摩擦力變?yōu)殪o摩擦力

C、當(dāng)工件相對皮帶靜止時,它位于皮帶上A點右側(cè)的某一點

D、工件在皮帶上有可能不存在與皮帶相對靜止的狀態(tài)

解說:B選項需要用到牛頓第一定律,A、C、D選項用到牛頓第二定律。

較難突破的是A選項,在為什么不會“立即跟上皮帶”的問題上,建議使用反證法(t → 0 ,a →  ,則ΣFx   ,必然會出現(xiàn)“供不應(yīng)求”的局面)和比較法(為什么人跳上速度不大的物體可以不發(fā)生相對滑動?因為人是可以形變、重心可以調(diào)節(jié)的特殊“物體”)

此外,本題的D選項還要用到勻變速運動規(guī)律。用勻變速運動規(guī)律和牛頓第二定律不難得出

只有當(dāng)L > 時(其中μ為工件與皮帶之間的動摩擦因素),才有相對靜止的過程,否則沒有。

答案:A、D

思考:令L = 10m ,v = 2 m/s ,μ= 0.2 ,g取10 m/s2 ,試求工件到達皮帶右端的時間t(過程略,答案為5.5s)

進階練習(xí):在上面“思考”題中,將工件給予一水平向右的初速v0 ,其它條件不變,再求t(學(xué)生分以下三組進行)——

① v0 = 1m/s  (答:0.5 + 37/8 = 5.13s)

② v0 = 4m/s  (答:1.0 + 3.5 = 4.5s)

③ v0 = 1m/s  (答:1.55s)

2、質(zhì)量均為m的兩只鉤碼A和B,用輕彈簧和輕繩連接,然后掛在天花板上,如圖2所示。試問:

① 如果在P處剪斷細繩,在剪斷瞬時,B的加速度是多少?

② 如果在Q處剪斷彈簧,在剪斷瞬時,B的加速度又是多少?

解說:第①問是常規(guī)處理。由于“彈簧不會立即發(fā)生形變”,故剪斷瞬間彈簧彈力維持原值,所以此時B鉤碼的加速度為零(A的加速度則為2g)。

第②問需要我們反省這樣一個問題:“彈簧不會立即發(fā)生形變”的原因是什么?是A、B兩物的慣性,且速度v和位移s不能突變。但在Q點剪斷彈簧時,彈簧卻是沒有慣性的(沒有質(zhì)量),遵從理想模型的條件,彈簧應(yīng)在一瞬間恢復(fù)原長!即彈簧彈力突變?yōu)榱恪?/p>

答案:0 ;g 。

二、牛頓第二定律的應(yīng)用

應(yīng)用要點:受力較少時,直接應(yīng)用牛頓第二定律的“矢量性”解題。受力比較多時,結(jié)合正交分解與“獨立作用性”解題。

在難度方面,“瞬時性”問題相對較大。

1、滑塊在固定、光滑、傾角為θ的斜面上下滑,試求其加速度。

解說:受力分析 → 根據(jù)“矢量性”定合力方向  牛頓第二定律應(yīng)用

答案:gsinθ。

思考:如果斜面解除固定,上表仍光滑,傾角仍為θ,要求滑塊與斜面相對靜止,斜面應(yīng)具備一個多大的水平加速度?(解題思路完全相同,研究對象仍為滑塊。但在第二環(huán)節(jié)上應(yīng)注意區(qū)別。答:gtgθ。)

進階練習(xí)1:在一向右運動的車廂中,用細繩懸掛的小球呈現(xiàn)如圖3所示的穩(wěn)定狀態(tài),試求車廂的加速度。(和“思考”題同理,答:gtgθ。)

進階練習(xí)2、如圖4所示,小車在傾角為α的斜面上勻加速運動,車廂頂用細繩懸掛一小球,發(fā)現(xiàn)懸繩與豎直方向形成一個穩(wěn)定的夾角β。試求小車的加速度。

解:繼續(xù)貫徹“矢量性”的應(yīng)用,但數(shù)學(xué)處理復(fù)雜了一些(正弦定理解三角形)。

分析小球受力后,根據(jù)“矢量性”我們可以做如圖5所示的平行四邊形,并找到相應(yīng)的夾角。設(shè)張力T與斜面方向的夾角為θ,則

θ=(90°+ α)- β= 90°-(β-α)                 (1)

對灰色三角形用正弦定理,有

 =                                        (2)

解(1)(2)兩式得:ΣF = 

最后運用牛頓第二定律即可求小球加速度(即小車加速度)

答: 。

2、如圖6所示,光滑斜面傾角為θ,在水平地面上加速運動。斜面上用一條與斜面平行的細繩系一質(zhì)量為m的小球,當(dāng)斜面加速度為a時(a<ctgθ),小球能夠保持相對斜面靜止。試求此時繩子的張力T 。

解說:當(dāng)力的個數(shù)較多,不能直接用平行四邊形尋求合力時,宜用正交分解處理受力,在對應(yīng)牛頓第二定律的“獨立作用性”列方程。

正交坐標(biāo)的選擇,視解題方便程度而定。

解法一:先介紹一般的思路。沿加速度a方向建x軸,與a垂直的方向上建y軸,如圖7所示(N為斜面支持力)。于是可得兩方程

ΣFx = ma ,即Tx - Nx = ma

ΣFy = 0 , 即Ty + Ny = mg

代入方位角θ,以上兩式成為

T cosθ-N sinθ = ma                       (1)

T sinθ + Ncosθ = mg                       (2)

這是一個關(guān)于T和N的方程組,解(1)(2)兩式得:T = mgsinθ + ma cosθ

解法二:下面嘗試一下能否獨立地解張力T 。將正交分解的坐標(biāo)選擇為:x——斜面方向,y——和斜面垂直的方向。這時,在分解受力時,只分解重力G就行了,但值得注意,加速度a不在任何一個坐標(biāo)軸上,是需要分解的。矢量分解后,如圖8所示。

根據(jù)獨立作用性原理,ΣFx = max

即:T - Gx = max

即:T - mg sinθ = m acosθ

顯然,獨立解T值是成功的。結(jié)果與解法一相同。

答案:mgsinθ + ma cosθ

思考:當(dāng)a>ctgθ時,張力T的結(jié)果會變化嗎?(從支持力的結(jié)果N = mgcosθ-ma sinθ看小球脫離斜面的條件,求脫離斜面后,θ條件已沒有意義。答:T = m 。)

學(xué)生活動:用正交分解法解本節(jié)第2題“進階練習(xí)2”

進階練習(xí):如圖9所示,自動扶梯與地面的夾角為30°,但扶梯的臺階是水平的。當(dāng)扶梯以a = 4m/s2的加速度向上運動時,站在扶梯上質(zhì)量為60kg的人相對扶梯靜止。重力加速度g = 10 m/s2,試求扶梯對人的靜摩擦力f 。

解:這是一個展示獨立作用性原理的經(jīng)典例題,建議學(xué)生選擇兩種坐標(biāo)(一種是沿a方向和垂直a方向,另一種是水平和豎直方向),對比解題過程,進而充分領(lǐng)會用牛頓第二定律解題的靈活性。

答:208N 。

3、如圖10所示,甲圖系著小球的是兩根輕繩,乙圖系著小球的是一根輕彈簧和輕繩,方位角θ已知,F(xiàn)將它們的水平繩剪斷,試求:在剪斷瞬間,兩種情形下小球的瞬時加速度。

解說:第一步,闡明繩子彈力和彈簧彈力的區(qū)別。

(學(xué)生活動)思考:用豎直的繩和彈簧懸吊小球,并用豎直向下的力拉住小球靜止,然后同時釋放,會有什么現(xiàn)象?原因是什么?

結(jié)論——繩子的彈力可以突變而彈簧的彈力不能突變(胡克定律)。

第二步,在本例中,突破“繩子的拉力如何瞬時調(diào)節(jié)”這一難點(從即將開始的運動來反推)。

知識點,牛頓第二定律的瞬時性。

答案:a = gsinθ ;a = gtgθ 。

應(yīng)用:如圖11所示,吊籃P掛在天花板上,與吊籃質(zhì)量相等的物體Q被固定在吊籃中的輕彈簧托住,當(dāng)懸掛吊籃的細繩被燒斷瞬間,P、Q的加速度分別是多少?

解:略。

答:2g ;0 。

三、牛頓第二、第三定律的應(yīng)用

要點:在動力學(xué)問題中,如果遇到幾個研究對象時,就會面臨如何處理對象之間的力和對象與外界之間的力問題,這時有必要引進“系統(tǒng)”、“內(nèi)力”和“外力”等概念,并適時地運用牛頓第三定律。

在方法的選擇方面,則有“隔離法”和“整體法”。前者是根本,后者有局限,也有難度,但常常使解題過程簡化,使過程的物理意義更加明晰。

對N個對象,有N個隔離方程和一個(可能的)整體方程,這(N + 1)個方程中必有一個是通解方程,如何取舍,視解題方便程度而定。

補充:當(dāng)多個對象不具有共同的加速度時,一般來講,整體法不可用,但也有一種特殊的“整體方程”,可以不受這個局限(可以介紹推導(dǎo)過程)——

Σ= m1 + m2 + m3 + … + mn

其中Σ只能是系統(tǒng)外力的矢量和,等式右邊也是矢量相加。

1、如圖12所示,光滑水平面上放著一個長為L的均質(zhì)直棒,現(xiàn)給棒一個沿棒方向的、大小為F的水平恒力作用,則棒中各部位的張力T隨圖中x的關(guān)系怎樣?

解說:截取隔離對象,列整體方程和隔離方程(隔離右段較好)。

答案:N = x 。

思考:如果水平面粗糙,結(jié)論又如何?

解:分兩種情況,(1)能拉動;(2)不能拉動。

第(1)情況的計算和原題基本相同,只是多了一個摩擦力的處理,結(jié)論的化簡也麻煩一些。

第(2)情況可設(shè)棒的總質(zhì)量為M ,和水平面的摩擦因素為μ,而F = μMg ,其中l(wèi)<L ,則x<(L-l)的右段沒有張力,x>(L-l)的左端才有張力。

答:若棒仍能被拉動,結(jié)論不變。

若棒不能被拉動,且F = μMg時(μ為棒與平面的摩擦因素,l為小于L的某一值,M為棒的總質(zhì)量),當(dāng)x<(L-l),N≡0 ;當(dāng)x>(L-l),N = 〔x -〈L-l〉〕。

應(yīng)用:如圖13所示,在傾角為θ的固定斜面上,疊放著兩個長方體滑塊,它們的質(zhì)量分別為m1和m2 ,它們之間的摩擦因素、和斜面的摩擦因素分別為μ1和μ2 ,系統(tǒng)釋放后能夠一起加速下滑,則它們之間的摩擦力大小為:

A、μ1 m1gcosθ ;    B、μ2 m1gcosθ ;

C、μ1 m2gcosθ ;    D、μ1 m2gcosθ ;

解:略。

答:B 。(方向沿斜面向上。)

思考:(1)如果兩滑塊不是下滑,而是以初速度v0一起上沖,以上結(jié)論會變嗎?(2)如果斜面光滑,兩滑塊之間有沒有摩擦力?(3)如果將下面的滑塊換成如圖14所示的盒子,上面的滑塊換成小球,它們以初速度v0一起上沖,球應(yīng)對盒子的哪一側(cè)內(nèi)壁有壓力?

解:略。

答:(1)不會;(2)沒有;(3)若斜面光滑,對兩內(nèi)壁均無壓力,若斜面粗糙,對斜面上方的內(nèi)壁有壓力。

2、如圖15所示,三個物體質(zhì)量分別為m1 、m2和m3 ,帶滑輪的物體放在光滑水平面上,滑輪和所有接觸面的摩擦均不計,繩子的質(zhì)量也不計,為使三個物體無相對滑動,水平推力F應(yīng)為多少?

解說:

此題對象雖然有三個,但難度不大。隔離m2 ,豎直方向有一個平衡方程;隔離m1 ,水平方向有一個動力學(xué)方程;整體有一個動力學(xué)方程。就足以解題了。

答案:F =  。

思考:若將質(zhì)量為m3物體右邊挖成凹形,讓m2可以自由擺動(而不與m3相碰),如圖16所示,其它條件不變。是否可以選擇一個恰當(dāng)?shù)腇′,使三者無相對運動?如果沒有,說明理由;如果有,求出這個F′的值。

解:此時,m2的隔離方程將較為復(fù)雜。設(shè)繩子張力為T ,m2的受力情況如圖,隔離方程為:

 = m2a

隔離m,仍有:T = m1a

解以上兩式,可得:a = g

最后用整體法解F即可。

答:當(dāng)m1 ≤ m2時,沒有適應(yīng)題意的F′;當(dāng)m1 > m2時,適應(yīng)題意的F′=  。

3、一根質(zhì)量為M的木棒,上端用細繩系在天花板上,棒上有一質(zhì)量為m的貓,如圖17所示。現(xiàn)將系木棒的繩子剪斷,同時貓相對棒往上爬,但要求貓對地的高度不變,則棒的加速度將是多少?

解說:法一,隔離法。需要設(shè)出貓爪抓棒的力f ,然后列貓的平衡方程和棒的動力學(xué)方程,解方程組即可。

法二,“新整體法”。

據(jù)Σ= m1 + m2 + m3 + … + mn ,貓和棒的系統(tǒng)外力只有兩者的重力,豎直向下,而貓的加速度a1 = 0 ,所以:

( M + m )g = m·0 + M a1 

解棒的加速度a1十分容易。

答案:g 。

四、特殊的連接體

當(dāng)系統(tǒng)中各個體的加速度不相等時,經(jīng)典的整體法不可用。如果各個體的加速度不在一條直線上,“新整體法”也將有一定的困難(矢量求和不易)。此時,我們回到隔離法,且要更加注意找各參量之間的聯(lián)系。

解題思想:抓某個方向上加速度關(guān)系。方法:“微元法”先看位移關(guān)系,再推加速度關(guān)系。、

1、如圖18所示,一質(zhì)量為M 、傾角為θ的光滑斜面,放置在光滑的水平面上,另一個質(zhì)量為m的滑塊從斜面頂端釋放,試求斜面的加速度。

解說:本題涉及兩個物體,它們的加速度關(guān)系復(fù)雜,但在垂直斜面方向上,大小是相等的。對兩者列隔離方程時,務(wù)必在這個方向上進行突破。

(學(xué)生活動)定型判斷斜面的運動情況、滑塊的運動情況。

位移矢量示意圖如圖19所示。根據(jù)運動學(xué)規(guī)律,加速度矢量a1和a2也具有這樣的關(guān)系。

(學(xué)生活動)這兩個加速度矢量有什么關(guān)系?

沿斜面方向、垂直斜面方向建x 、y坐標(biāo),可得:

a1y = a2y             ①

且:a1y = a2sinθ     ②

隔離滑塊和斜面,受力圖如圖20所示。

對滑塊,列y方向隔離方程,有:

mgcosθ- N = ma1y     ③

對斜面,仍沿合加速度a2方向列方程,有:

Nsinθ= Ma2          ④

解①②③④式即可得a2 。

答案:a2 =  。

(學(xué)生活動)思考:如何求a1的值?

解:a1y已可以通過解上面的方程組求出;a1x只要看滑塊的受力圖,列x方向的隔離方程即可,顯然有mgsinθ= ma1x ,得:a1x = gsinθ 。最后據(jù)a1 = 求a1 。

答:a1 =  。

2、如圖21所示,與水平面成θ角的AB棒上有一滑套C ,可以無摩擦地在棒上滑動,開始時與棒的A端相距b ,相對棒靜止。當(dāng)棒保持傾角θ不變地沿水平面勻加速運動,加速度為a(且a>gtgθ)時,求滑套C從棒的A端滑出所經(jīng)歷的時間。

解說:這是一個比較特殊的“連接體問題”,尋求運動學(xué)參量的關(guān)系似乎比動力學(xué)分析更加重要。動力學(xué)方面,只需要隔離滑套C就行了。

(學(xué)生活動)思考:為什么題意要求a>gtgθ?(聯(lián)系本講第二節(jié)第1題之“思考題”)

定性繪出符合題意的運動過程圖,如圖22所示:S表示棒的位移,S1表示滑套的位移。沿棒與垂直棒建直角坐標(biāo)后,S1x表示S1在x方向上的分量。不難看出:

S1x + b = S cosθ                   ①

設(shè)全程時間為t ,則有:

S = at2                          ②

S1x = a1xt2                        ③

而隔離滑套,受力圖如圖23所示,顯然:

mgsinθ= ma1x                       ④

解①②③④式即可。

答案:t = 

另解:如果引進動力學(xué)在非慣性系中的修正式 Σ* = m (注:*為慣性力),此題極簡單。過程如下——

以棒為參照,隔離滑套,分析受力,如圖24所示。

注意,滑套相對棒的加速度a是沿棒向上的,故動力學(xué)方程為:

F*cosθ- mgsinθ= ma            (1)

其中F* = ma                      (2)

而且,以棒為參照,滑套的相對位移S就是b ,即:

b = S = a t2                 (3)

解(1)(2)(3)式就可以了。

第二講 配套例題選講

教材范本:龔霞玲主編《奧林匹克物理思維訓(xùn)練教材》,知識出版社,2002年8月第一版。

例題選講針對“教材”第三章的部分例題和習(xí)題。

查看答案和解析>>

同步練習(xí)冊答案