專(zhuān)題17 記憶能力與運(yùn)算能力
一 記憶能力
記憶是系統(tǒng)化知識(shí),形成方法,思想的先決條件,因而我們對(duì)記憶能力應(yīng)引起足夠的重視.
下面來(lái)試試你的記憶能力:
1.求一個(gè)函數(shù)的解析式和一個(gè)函數(shù)的反函數(shù)時(shí),你標(biāo)注了該函數(shù)的定義域了嗎?
2.函數(shù)與其反函數(shù)之間的一個(gè)有用的結(jié)論:
3.原函數(shù)在區(qū)間上單調(diào)遞增,則一定存在反函數(shù),且反函數(shù)也單調(diào)遞增;但一個(gè)函數(shù)存在反函數(shù),此函數(shù)不一定單調(diào).
4. 判斷一個(gè)函數(shù)的奇偶性時(shí),你注意到函數(shù)的定義域是否關(guān)于原點(diǎn)對(duì)稱(chēng)這個(gè)必要非充分條件了嗎?
5. 你知道函數(shù)的單調(diào)區(qū)間嗎?(該函數(shù)在或上單調(diào)遞增;在或上單調(diào)遞減)這可是一個(gè)應(yīng)用廣泛的函數(shù)!
6. 解對(duì)數(shù)函數(shù)問(wèn)題時(shí),你注意到真數(shù)與底數(shù)的限制條件了嗎?(真數(shù)大于零,底數(shù)大于零且不等于1)字母底數(shù)還需討論呀.
7. 你知道判斷對(duì)數(shù)符號(hào)的快捷方法嗎?
8. “實(shí)系數(shù)一元二次方程有實(shí)數(shù)解”轉(zhuǎn)化為“”,你是否注意到必須;當(dāng)a=0時(shí),“方程有解”不能轉(zhuǎn)化為.若原題中沒(méi)有指出是“二次”方程、函數(shù)或不等式,你是否考慮到二次項(xiàng)系數(shù)可能為零的情形?
9. 在解三角問(wèn)題時(shí),你注意到正切函數(shù)、余切函數(shù)的定義域了嗎?你注意到正弦函數(shù)、余弦函數(shù)的有界性了嗎?
10. 在三角中,你知道1等于什么嗎?( 這些統(tǒng)稱(chēng)為1的代換) 常數(shù) “
11. 你還記得三角化簡(jiǎn)的通性通法嗎?(切割化弦、降冪公式、用三角公式轉(zhuǎn)化出現(xiàn)特殊角. 異角化同角,異名化同名,高次化低次)
12. 你還記得在弧度制下弧長(zhǎng)公式和扇形面積公式嗎?()
13. 在用反三角函數(shù)表示直線的傾斜角、兩條異面直線所成的角等時(shí),你是否注意到它們各自的取值范圍及意義?
①異面直線所成的角、直線與平面所成的角、二面角的取值范圍依次是.
②直線的傾斜角、到的角、與的夾角的取值范圍依次是.
③反正弦、反余弦、反正切函數(shù)的取值范圍分別是.
14. 分式不等式的一般解題思路是什么?(移項(xiàng)通分)
15. 解指對(duì)不等式應(yīng)該注意什么問(wèn)題?(指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的單調(diào)性, 對(duì)數(shù)的真數(shù)大于零.)
16. 利用重要不等式 以及變式等求函數(shù)的最值時(shí),你是否注意到a,b(或a ,b非負(fù)),且“等號(hào)成立”時(shí)的條件,積ab或和a+b其中之一應(yīng)是定值?
17. 在解含有參數(shù)的不等式時(shí),怎樣進(jìn)行討論?(特別是指數(shù)和對(duì)數(shù)的底或)討論完之后,要寫(xiě)出:綜上所述,原不等式的解是…….
18. 等差數(shù)列中的重要性質(zhì):若,則;
等比數(shù)列中的重要性質(zhì):若,則.
19. 你是否注意到在應(yīng)用等比數(shù)列求前n項(xiàng)和時(shí),需要分類(lèi)討論.(時(shí),;時(shí),)
20. 等差數(shù)列的一個(gè)性質(zhì):設(shè)是數(shù)列的前n項(xiàng)和,為等差數(shù)列的充要條件是
(a, b為常數(shù))其公差是
21. 你知道怎樣的數(shù)列求和時(shí)要用“錯(cuò)位相減”法嗎?(若,其中是等差數(shù)列,是等比數(shù)列,求的前n項(xiàng)的和)
22. 用求數(shù)列的通項(xiàng)公式時(shí),你注意到了嗎?
23. 你還記得裂項(xiàng)求和嗎?(如 .)
24. 解排列組合問(wèn)題的依據(jù)是:分類(lèi)相加,分步相乘,有序排列,無(wú)序組合.
25. 解排列組合問(wèn)題的規(guī)律是:相鄰問(wèn)題捆綁法;不鄰問(wèn)題插空法;多排問(wèn)題單排法;定位問(wèn)題優(yōu)先法;定序問(wèn)題倍縮法;多元問(wèn)題分類(lèi)法;有序分配問(wèn)題法;選取問(wèn)題先排后排法;至多至少問(wèn)題間接法.
26. 作出二面角的平面角主要方法是什么?(定義法、三垂線法、垂面法)三垂線法:一定平面,二作垂線,三作斜線,射影可見(jiàn).
27. 求點(diǎn)到面的距離的常規(guī)方法是什么?(直接法、體積法)
28. 求多面體體積的常規(guī)方法是什么?(割補(bǔ)法、等積變換法)
29. 你知道三垂線定理的關(guān)鍵是什么嗎?(一面、四線、三垂直、立柱即面的垂線是關(guān)鍵)一面四直線,立柱是關(guān)鍵,垂直三處見(jiàn)
30. 設(shè)直線方程時(shí),一般可設(shè)直線的斜率為k,你是否注意到直線垂直于x軸時(shí),斜率k不存在的情況?(例如:一條直線經(jīng)過(guò)點(diǎn),且被圓截得的弦長(zhǎng)為8,求此弦所在直線的方程。該題就要注意,不要漏掉x+3=0這一解.)
31. 定比分點(diǎn)的坐標(biāo)公式是什么?(起點(diǎn),中點(diǎn),分點(diǎn)以及值可要搞清)
32. 對(duì)不重合的兩條直線,,有
; .
33. 直線在坐標(biāo)軸上的截矩可正,可負(fù),也可為0.
34. 處理直線與圓的位置關(guān)系有兩種方法:(1)點(diǎn)到直線的距離;(2)直線方程與圓的方程聯(lián)立,判別式. 一般來(lái)說(shuō),前者更簡(jiǎn)捷.
35. 處理圓與圓的位置關(guān)系,可用兩圓的圓心距與半徑之間的關(guān)系.
36. 在圓中,注意利用半徑、半弦長(zhǎng)、及弦心距組成的直角三角形.
37.還記得圓錐曲線的兩種定義嗎?解有關(guān)題是否會(huì)聯(lián)想到這兩個(gè)定義?
38.還記得圓錐曲線方程中的a,b,c,p,的意義嗎?
39. 在利用圓錐曲線統(tǒng)一定義解題時(shí),你是否注意到定義中的定比的分子分母的順序?
40.離心率的大小與曲線的形狀有何關(guān)系?(圓扁程度,張口大。┑容S雙曲線的離心率是多少?
41. 在用圓錐曲線與直線聯(lián)立求解時(shí),消元后得到的方程中要注意:二次項(xiàng)的系數(shù)是否為零?判別式的限制.(求交點(diǎn),弦長(zhǎng),中點(diǎn),斜率,對(duì)稱(chēng),存在性問(wèn)題都在下進(jìn)行).
42. 橢圓中,注意焦點(diǎn)、中心、短軸端點(diǎn)所組成的直角三角形.(a,b,c)
43. 通徑是拋物線的所有焦點(diǎn)弦中最短的弦.
44.只要的求導(dǎo)公式有哪些?
(1),(2),(3),(4),(5),
(6),(7),(8),(9),
(10),(11),(12).
45. 解答選擇題的特殊方法是什么?(順推法,估算法,特例法,特征分析法,直觀選擇法,逆推驗(yàn)證法等等)
46. 解答開(kāi)放型問(wèn)題時(shí),需要思維廣闊全面,知識(shí)縱橫聯(lián)系.
47. 解答信息型問(wèn)題時(shí),透徹理解問(wèn)題中的新信息,這是準(zhǔn)確解題的前提.
48. 解答多參型問(wèn)題時(shí),關(guān)鍵在于恰當(dāng)?shù)匾鰠⒆兞? 想方設(shè)法擺脫參變量的困繞.這當(dāng)中,參變量的分離、集中、消去、代換以及反客為主等策略,似乎是解答這類(lèi)問(wèn)題的通性通法.
二 運(yùn)算能力
每年高考都說(shuō)要控制運(yùn)算量,但結(jié)果是每年都控制不了.理由很簡(jiǎn)單:有數(shù)學(xué),就有運(yùn)算.
不厭其繁的運(yùn)算,可以培養(yǎng)我們的耐性,和堅(jiān)忍不拔的性格.
問(wèn)題1任一分?jǐn)?shù)都可以寫(xiě)成有限小數(shù)或無(wú)限循環(huán)小數(shù)的形式,你相信嗎?試幾個(gè)看看.
(1)= ;
(2)= ;
(3)請(qǐng)你自己寫(xiě)一個(gè)試試: .
問(wèn)題2已知三角形的三個(gè)頂點(diǎn)分別是,
求角平分線AM所在直線的方程.
問(wèn)題3(如圖)已知正四棱錐的各條棱長(zhǎng)均為1,
E,F分別為VB,VC的中點(diǎn).
(I)求平面PAB與平面PBC所成的角的大小;
(II)求點(diǎn)A到平面PBC的距離;
(III)求直線AE與平面PBC所成的角的大小;
(IV)求異面直線AE與BF所成的角的大小;
問(wèn)題4某中心接到其正東、正西、正北方向三個(gè)觀測(cè)點(diǎn)的報(bào)告:正西、正北兩個(gè)觀測(cè)
點(diǎn)同時(shí)聽(tīng)到了一聲巨響,正東觀測(cè)點(diǎn)聽(tīng)到的時(shí)間比其他兩觀測(cè)點(diǎn)晚4s. 已知各觀測(cè)點(diǎn)
到該中心的距離都是1020m. 試確定該巨響發(fā)生的位置.(假定當(dāng)時(shí)聲音傳播的速度為
問(wèn)題5設(shè)直線與橢圓相交于A、B兩點(diǎn),又與雙曲線x2?y2=1相交于C、
D兩點(diǎn),C、D三等分線段AB. 求直線的方程.
問(wèn)題解答:問(wèn)題1(略).問(wèn)題2
解(一):可得,,設(shè)直線AM的斜率為,則
,即,得,
有,解得,(舍去)
得角平分線AM的方程為:
即.
解(二):,它的單位向量
,它的單位向量
則AM與(+,)同向
得,(下同解一).
問(wèn)題3解:(I)(如圖)以正方形ABCD的中心為原點(diǎn),建立空間直角坐標(biāo)系,則
得,,,
,,
設(shè)平面PBC的法向量為,則,
有,得,有,則
得,同理得平面PBC的法向量,則
,
而平面PAB與平面PBC所成的角為鈍角,所以它的大小為.
(II)由,設(shè)與所成的角為,則
則點(diǎn)A到平面PBC的距離.
(III)可得E,有,設(shè)與所成的角為,則
,
得AE與平面PBC所成的角為.
(IV)可得F,得,設(shè)與所成的角為,則
得AE與BF所成的角為.
問(wèn)題4 解:如圖,
以接報(bào)中心為原點(diǎn)O,正東、正北方向?yàn)閤軸、y軸正向,建立直角坐標(biāo)系.設(shè)A、B、C分別是西、東、北觀測(cè)點(diǎn),則A(-1020,0),B(1020,0),C(0,1020)
設(shè)P(x,y)為巨響為生點(diǎn),由A、C同時(shí)聽(tīng)到巨響聲,得|PA|=|PB|,故P在AC的垂直平分線PO上,PO的方程為y=-x,因B點(diǎn)比A點(diǎn)晚4s聽(tīng)到爆炸聲,故|PB|- |PA|=340×4=1360
由雙曲線定義知P點(diǎn)在以A、B為焦點(diǎn)的雙曲線上,
依題意得a=680, c=1020,
用y=-x代入上式,得,∵|PB|>|PA|,
答:巨響發(fā)生在接報(bào)中心的西偏北450距中心處.
問(wèn)題5解:首先討論l不與x軸垂直時(shí)的情況,設(shè)直線l的方程為
y=kx+b,如圖所示,l與橢圓、雙曲線的交點(diǎn)為:
依題意有,由
若,則與雙曲線最多只有一個(gè)交點(diǎn),不合題意,故
由
故l的方程為
(ii)當(dāng)b=0時(shí),由(1)得
由
故l的方程為
再討論l與x軸垂直的情況.
設(shè)直線l的方程為x=c,分別代入橢圓和雙曲線方程可解得,
綜上所述,故l的方程為、和
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com