山東省煙臺市2009屆高三第二次模擬考試.
數(shù)學(理)試題.
注意事項:.
1.本試題滿分150分,考試時間為120分鐘..
2.使用答題卡時。必須使用0.5毫米的黑色墨水簽字筆書寫,作圖時,可用2B鉛筆,要字跡工整,筆跡清晰,嚴格在題號所指示的答題區(qū)域內(nèi)作答,超出答題區(qū)書寫的答案無效;在草稿紙、試題卷上答題無效..
3.答卷前將密封線內(nèi)的項目填寫清楚..
一、選擇題:本大題共12小題,每小題5分.共60分.在每小題給出的四個選項中,只有一個是正確的,將正確答案的代號涂在答題卡上..
1.設函數(shù)的定義域為
,集合
,則
等于
.
A. B.
C.
D.
.
2.已知,
為虛數(shù)單位,若
,則
的值等于
.
A.-6
8.-2
C.2 D.6.
3.已知函數(shù)則
是
.
A.單調(diào)遞增函數(shù) B.單調(diào)遞減函數(shù).
C.奇函數(shù)
D.偶函數(shù).
4.若數(shù)列滿足
(
為正常數(shù),
),則稱
為“等方差數(shù)列”.
甲:數(shù)列為等方差數(shù)列;乙:數(shù)列
為等差數(shù)列,則甲是乙的
.
A.充分不必條件 B.必不充分條件.
C.充要條件 D.既不充分也不必要條件.
5.是不同的直線,
是不重合的平面.下列命題為真命題的是
.
A.若∥
,
,則
B.若
.
C.若則
D.若
,則
.
6.若函數(shù)的圖象在
處的切線
與圓
相離,則
與圓
的位置關系是
.
A.在圓外 8.在圓內(nèi) C.在圓上 D.不能確定.
7.已知是
上的增函數(shù),那么實數(shù)
的取值范圍是
.
A.(1,+∞) B.(-∞.3) c. D.(1,3)
.
8.已知拋物線上一點,
,
是其焦點,若
,則
的范圈是
.
A. B.
C.
D.
.
9.設則下列結論正確的是
.
A. B.
C.M<2 D.
.
10.函數(shù)和
的圖象在
內(nèi)的所有交點中,能確定的不同直線的條數(shù)是
.
A.28 B.18 C.16 D.6
11.已知函數(shù),方程
有6個不同的實根.則實數(shù)
的取值范圍是
A. B.
C.
D.
12.如圖,坐標紙上的每個單元格的邊長為1,由
下往上的六個點:l,2,3,4,5,6的橫、縱坐標分別對應數(shù)列的前l(fā)2項(即橫坐標為奇數(shù)項,縱坐標為偶數(shù)項),按如此規(guī)律下去,則
等于
A.1003 B.1005 C.1006 D.2011
二、填空題:本大題4個小題,每小題4分,共16分.
13.已知某個幾何體的三視圖
如圖所示.根據(jù)圖中標出的尺寸(單位:cm).可得這個幾何體的體積是 .
14.若函數(shù)
則
.
15.對任意非零實數(shù).若
的運算原理如圖所示.則
.
16.設,且關于不等式
.
的解集有且僅有5個元素.則
的值是 .
三、解答題:本大題共6個小題,滿分74分.解答時要求寫出必要的文字說明、證明過程或推演步驟.
17.(本題滿分12)
設非負實數(shù)、
滿足不等式組
(1)如圖在所給的坐標系中,畫出不等式組所表示的平面區(qū)域;
(2)求的取值范圍;
(3)在不等式組所表示的平面區(qū)域內(nèi),求點()落在
∈[1,2]區(qū)域內(nèi)的概率.
18.(本題滿分12)
已知,其中
.若
圖象中相鄰的對稱軸間的距離不小于
.
(1)求的取值范圍
(2)在中,
分別為角
的對邊.且
,當
最大時.求
面積.
19.(本題滿分12分)
如圖的多面體是底面為平行四邊形的直四棱柱
,經(jīng)平面
所截后得到的圖
形.其中,
,
.
(1)求證:平面
; A
(2)求平面與平面
所成銳二面角的余弦值.
20.(本題滿分12分)
甲、乙兩位學生參加數(shù)學競賽培訓.現(xiàn)分別從他們在培訓期間參加的若干次預賽成績中隨機抽取8次.記錄如下:
甲:82 81 79 78 95 88 93 84
乙:92 95 80 75 83 80 90 85
(1)畫出甲、乙兩位學生成績的莖葉圖,指出學生乙成績的中位數(shù).并說明它在乙組數(shù)據(jù)中的含義;
(2)現(xiàn)要從中選派一人參加數(shù)學競賽,從平均狀況和方差的角度考慮,你認為派哪位學生參加合適?請說明理由;
(3)若將頻率視為概率,對學生甲在今后的三次數(shù)學競賽成績進行預測,記這三次成績中高于80分的次數(shù)為,求
的分布列及數(shù)學期望.
21.(本題滿分12分)
設橢圓、拋物線
的焦點均在
軸上,
的中心和
的頂點均為原點,從每條曲線上至少取兩個點,將其坐標記錄于下表中:
(1)求的標準方程;
(2)設直線與橢圓
交于不同兩點
且
,請問是否存在這樣的
直線過拋物線
的焦點
?若存在,求出直線
的方程;若不存在,說明理由.
22.(本題滿分14分)
已知函數(shù) (
為自然對數(shù)的底數(shù)).
(1)求的最小值;
(2)不等式的解集為
,若
且
求實數(shù)
的取值范圍;
(3)已知,且
,是否存在等差數(shù)列
和首項為
公比大于0的等比數(shù)列
,使得
?若存在,請求出數(shù)列
的通項公式.若不存在,請說明理由.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com