0  1095  1103  1109  1113  1119  1121  1125  1131  1133  1139  1145  1149  1151  1155  1161  1163  1169  1173  1175  1179  1181  1185  1187  1189  1190  1191  1193  1194  1195  1197  1199  1203  1205  1209  1211  1215  1221  1223  1229  1233  1235  1239  1245  1251  1253  1259  1263  1265  1271  1275  1281  1289  3002 

四川師大附中高2006屆高三數(shù)學(xué)總復(fù)習(xí)(十四)實(shí)驗(yàn)修訂版

§14. 復(fù) 數(shù)  知識(shí)要點(diǎn)

1. ⑴復(fù)數(shù)的單位為i,它的平方等于-1,即.

⑵復(fù)數(shù)及其相關(guān)概念:

①      復(fù)數(shù)―形如a + bi的數(shù)(其中);

②      實(shí)數(shù)―當(dāng)b = 0時(shí)的復(fù)數(shù)a + bi,即a;

③      虛數(shù)―當(dāng)時(shí)的復(fù)數(shù)a + bi;

④      純虛數(shù)―當(dāng)a = 0且時(shí)的復(fù)數(shù)a + bi,即bi.

⑤      復(fù)數(shù)a + bi的實(shí)部與虛部―a叫做復(fù)數(shù)的實(shí)部,b叫做虛部(注意a,b都是實(shí)數(shù))

⑥      復(fù)數(shù)集C―全體復(fù)數(shù)的集合,一般用字母C表示.

⑶兩個(gè)復(fù)數(shù)相等的定義:

.

⑷兩個(gè)復(fù)數(shù),如果不全是實(shí)數(shù),就不能比較大小.

注:①若為復(fù)數(shù),則,則.(×)[為復(fù)數(shù),而不是實(shí)數(shù)]

,則.(√)

②若,則必要不充分條件.(當(dāng)

時(shí),上式成立)

2. ⑴復(fù)平面內(nèi)的兩點(diǎn)間距離公式:.

其中是復(fù)平面內(nèi)的兩點(diǎn)所對(duì)應(yīng)的復(fù)數(shù),間的距離.

由上可得:復(fù)平面內(nèi)以為圓心,為半徑的圓的復(fù)數(shù)方程:.

⑵曲線(xiàn)方程的復(fù)數(shù)形式:

為圓心,r為半徑的圓的方程.

表示線(xiàn)段的垂直平分線(xiàn)的方程.

為焦點(diǎn),長(zhǎng)半軸長(zhǎng)為a的橢圓的方程(若,此方程表示線(xiàn)段).

表示以為焦點(diǎn),實(shí)半軸長(zhǎng)為a的雙曲線(xiàn)方程(若,此方程表示兩條射線(xiàn)).

⑶絕對(duì)值不等式:

設(shè)是不等于零的復(fù)數(shù),則

.

左邊取等號(hào)的條件是,右邊取等號(hào)的條件是.

.

左邊取等號(hào)的條件是,右邊取等號(hào)的條件是.

注:.

3. 共軛復(fù)數(shù)的性質(zhì):

                                          

,a + bi)              

                                 

)                              

注:兩個(gè)共軛復(fù)數(shù)之差是純虛數(shù). (×)[之差可能為零,此時(shí)兩個(gè)復(fù)數(shù)是相等的]

4. ⑴①?gòu)?fù)數(shù)的乘方:

②對(duì)任何,

 

注:①以上結(jié)論不能拓展到分?jǐn)?shù)指數(shù)冪的形式,否則會(huì)得到荒謬的結(jié)果,如若由就會(huì)得到的錯(cuò)誤結(jié)論.

②在實(shí)數(shù)集成立的. 當(dāng)為虛數(shù)時(shí),,所以復(fù)數(shù)集內(nèi)解方程不能采用兩邊平方法.

⑵常用的結(jié)論:

   

是1的立方虛數(shù)根,即,則                                                  .

5.  ⑴復(fù)數(shù)是實(shí)數(shù)及純虛數(shù)的充要條件:

.

②若是純虛數(shù).

⑵模相等且方向相同的向量,不管它的起點(diǎn)在哪里,都認(rèn)為是相等的,而相等的向量表示同一復(fù)數(shù). 特例:零向量的方向是任意的,其模為零.

注:.

6. ⑴復(fù)數(shù)的三角形式:.

輻角主值:適合于0≤的值,記作.

注:①為零時(shí),可取內(nèi)任意值.

②輻角是多值的,都相差2的整數(shù)倍.

③設(shè).

⑵復(fù)數(shù)的代數(shù)形式與三角形式的互化:

,,.

⑶幾類(lèi)三角式的標(biāo)準(zhǔn)形式:

7. 復(fù)數(shù)集中解一元二次方程:

在復(fù)數(shù)集內(nèi)解關(guān)于的一元二次方程時(shí),應(yīng)注意下述問(wèn)題:

①當(dāng)時(shí),若>0,則有二不等實(shí)數(shù)根;若=0,則有二相等實(shí)數(shù)根;若<0,則有二相等復(fù)數(shù)根為共軛復(fù)數(shù)).

②當(dāng)不全為實(shí)數(shù)時(shí),不能用方程根的情況.

③不論為何復(fù)數(shù),都可用求根公式求根,并且韋達(dá)定理也成立.

8. 復(fù)數(shù)的三角形式運(yùn)算:

棣莫弗定理:.

試題詳情

四川師大附中高2006屆高三數(shù)學(xué)總復(fù)習(xí)(十三)實(shí)驗(yàn)修訂版

§13. 導(dǎo) 數(shù)  知識(shí)要點(diǎn)

1. 導(dǎo)數(shù)(導(dǎo)函數(shù)的簡(jiǎn)稱(chēng))的定義:設(shè)是函數(shù)定義域的一點(diǎn),如果自變量處有增量,則函數(shù)值也引起相應(yīng)的增量;比值稱(chēng)為函數(shù)在點(diǎn)之間的平均變化率;如果極限存在,則稱(chēng)函數(shù)在點(diǎn)處可導(dǎo),并把這個(gè)極限叫做處的導(dǎo)數(shù),記作,即=.

注:①是增量,我們也稱(chēng)為“改變量”,因?yàn)?sub>可正,可負(fù),但不為零.

②以知函數(shù)定義域?yàn)?sub>的定義域?yàn)?sub>,則關(guān)系為.

2. 函數(shù)在點(diǎn)處連續(xù)與點(diǎn)處可導(dǎo)的關(guān)系:

⑴函數(shù)在點(diǎn)處連續(xù)是在點(diǎn)處可導(dǎo)的必要不充分條件.

可以證明,如果在點(diǎn)處可導(dǎo),那么點(diǎn)處連續(xù).

事實(shí)上,令,則相當(dāng)于.

于是

⑵如果點(diǎn)處連續(xù),那么在點(diǎn)處可導(dǎo),是不成立的.

例:在點(diǎn)處連續(xù),但在點(diǎn)處不可導(dǎo),因?yàn)?sub>,當(dāng)>0時(shí),;當(dāng)<0時(shí),,故不存在.

注:①可導(dǎo)的奇函數(shù)函數(shù)其導(dǎo)函數(shù)為偶函數(shù).

②可導(dǎo)的偶函數(shù)函數(shù)其導(dǎo)函數(shù)為奇函數(shù).

3. 導(dǎo)數(shù)的幾何意義:

函數(shù)在點(diǎn)處的導(dǎo)數(shù)的幾何意義就是曲線(xiàn)在點(diǎn)處的切線(xiàn)的斜率,也就是說(shuō),曲線(xiàn)在點(diǎn)P處的切線(xiàn)的斜率是,切線(xiàn)方程為

4. 求導(dǎo)數(shù)的四則運(yùn)算法則:

為常數(shù))

注:①必須是可導(dǎo)函數(shù).

②若兩個(gè)函數(shù)可導(dǎo),則它們和、差、積、商必可導(dǎo);若兩個(gè)函數(shù)均不可導(dǎo),則它們的和、差、積、商不一定不可導(dǎo).

例如:設(shè),,則處均不可導(dǎo),但它們和

處均可導(dǎo).

5. 復(fù)合函數(shù)的求導(dǎo)法則:

復(fù)合函數(shù)的求導(dǎo)法則可推廣到多個(gè)中間變量的情形.

6. 函數(shù)單調(diào)性:

⑴函數(shù)單調(diào)性的判定方法:設(shè)函數(shù)在某個(gè)區(qū)間內(nèi)可導(dǎo),如果>0,則為增函數(shù);如果<0,則為減函數(shù).

⑵常數(shù)的判定方法;

如果函數(shù)在區(qū)間內(nèi)恒有=0,則為常數(shù).

注:①是f(x)遞增的充分條件,但不是必要條件,如上并不是都有,有一個(gè)點(diǎn)例外即x=0時(shí)f(x) = 0,同樣是f(x)遞減的充分非必要條件.

②一般地,如果f(x)在某區(qū)間內(nèi)有限個(gè)點(diǎn)處為零,在其余各點(diǎn)均為正(或負(fù)),那么f(x)在該區(qū)間上仍舊是單調(diào)增加(或單調(diào)減少)的.

7. 極值的判別方法:(極值是在附近所有的點(diǎn),都有,則是函數(shù)的極大值,極小值同理)

當(dāng)函數(shù)在點(diǎn)處連續(xù)時(shí),

①如果在附近的左側(cè)>0,右側(cè)<0,那么是極大值;

②如果在附近的左側(cè)<0,右側(cè)>0,那么是極小值.

也就是說(shuō)是極值點(diǎn)的充分條件是點(diǎn)兩側(cè)導(dǎo)數(shù)異號(hào),而不是=0. 此外,函數(shù)不可導(dǎo)的點(diǎn)也可能是函數(shù)的極值點(diǎn). 當(dāng)然,極值是一個(gè)局部概念,極值點(diǎn)的大小關(guān)系是不確定的,即有可能極大值比極小值。ê瘮(shù)在某一點(diǎn)附近的點(diǎn)不同).

注①: 若點(diǎn)是可導(dǎo)函數(shù)的極值點(diǎn),則=0. 但反過(guò)來(lái)不一定成立. 對(duì)于可導(dǎo)函數(shù),其一點(diǎn)是極值點(diǎn)的必要條件是若函數(shù)在該點(diǎn)可導(dǎo),則導(dǎo)數(shù)值為零.

例如:函數(shù)使=0,但不是極值點(diǎn).

②例如:函數(shù),在點(diǎn)處不可導(dǎo),但點(diǎn)是函數(shù)的極小值點(diǎn).

8. 極值與最值的區(qū)別:極值是在局部對(duì)函數(shù)值進(jìn)行比較,最值是在整體區(qū)間上對(duì)函數(shù)值進(jìn)行比較.

注:函數(shù)的極值點(diǎn)一定有意義.

9. 幾種常見(jiàn)的函數(shù)導(dǎo)數(shù):

I.為常數(shù))                      

)                   

II.                             

                                    

III. 求導(dǎo)的常見(jiàn)方法:

①常用結(jié)論:.

②形如兩邊同取自然對(duì)數(shù),可轉(zhuǎn)化求代數(shù)和形式.

③無(wú)理函數(shù)或形如這類(lèi)函數(shù),如取自然對(duì)數(shù)之后可變形為,對(duì)兩邊求導(dǎo)可得.

試題詳情

四川師大附中高2006屆高三數(shù)學(xué)總復(fù)習(xí)(十二)

§12. 極 限  知識(shí)要點(diǎn)

1. ⑴第一數(shù)學(xué)歸納法:①證明當(dāng)取第一個(gè)時(shí)結(jié)論正確;②假設(shè)當(dāng))時(shí),結(jié)論正確,證明當(dāng)時(shí),結(jié)論成立.

⑵第二數(shù)學(xué)歸納法:設(shè)是一個(gè)與正整數(shù)有關(guān)的命題,如果

①當(dāng))時(shí),成立;

②假設(shè)當(dāng))時(shí),成立,推得時(shí),也成立.

那么,根據(jù)①②對(duì)一切自然數(shù)時(shí),都成立.

2. ⑴數(shù)列極限的表示方法:

②當(dāng)時(shí),.

⑵幾個(gè)常用極限:

為常數(shù))

③對(duì)于任意實(shí)常數(shù),

當(dāng)時(shí),

當(dāng)時(shí),若a = 1,則;若,則不存在

當(dāng)時(shí),不存在

⑶數(shù)列極限的四則運(yùn)算法則:

如果,那么

特別地,如果C是常數(shù),那么

.

⑷數(shù)列極限的應(yīng)用:

求無(wú)窮數(shù)列的各項(xiàng)和,特別地,當(dāng)時(shí),無(wú)窮等比數(shù)列的各項(xiàng)和為.

(化循環(huán)小數(shù)為分?jǐn)?shù)方法同上式)

注:并不是每一個(gè)無(wú)窮數(shù)列都有極限.

3. 函數(shù)極限;

⑴當(dāng)自變量無(wú)限趨近于常數(shù)(但不等于)時(shí),如果函數(shù)無(wú)限趨進(jìn)于一個(gè)常數(shù),就是說(shuō)當(dāng)趨近于時(shí),函數(shù)的極限為.記作或當(dāng)時(shí),.

注:當(dāng)時(shí),是否存在極限與處是否定義無(wú)關(guān),因?yàn)?sub>并不要求.(當(dāng)然,是否有定義也與處是否存在極限無(wú)關(guān).函數(shù)有定義是存在的既不充分又不必要條件.)

處無(wú)定義,但存在,因?yàn)樵?sub>處左右極限均等于零.

⑵函數(shù)極限的四則運(yùn)算法則:

如果,那么

特別地,如果C是常數(shù),那么

.

注:①各個(gè)函數(shù)的極限都應(yīng)存在.

②四則運(yùn)算法則可推廣到任意有限個(gè)極限的情況,但不能推廣到無(wú)限個(gè)情況.

⑶幾個(gè)常用極限:

(0<<1);>1)

,

4. 函數(shù)的連續(xù)性:

⑴如果函數(shù)f(x),g(x)在某一點(diǎn)連續(xù),那么函數(shù)在點(diǎn)處都連續(xù).

⑵函數(shù)f(x)在點(diǎn)處連續(xù)必須滿(mǎn)足三個(gè)條件:

①函數(shù)f(x)在點(diǎn)處有定義;②存在;③函數(shù)f(x)在點(diǎn)處的極限值等于該點(diǎn)的函數(shù)值,即.

⑶函數(shù)f(x)在點(diǎn)處不連續(xù)(間斷)的判定:

如果函數(shù)f(x)在點(diǎn)處有下列三種情況之一時(shí),則稱(chēng)為函數(shù)f(x)的不連續(xù)點(diǎn).

①f(x)在點(diǎn)處沒(méi)有定義,即不存在;②不存在;③存在,但.

5. 零點(diǎn)定理,介值定理,夾逼定理:

⑴零點(diǎn)定理:設(shè)函數(shù)在閉區(qū)間上連續(xù),且.那么在開(kāi)區(qū)間內(nèi)至少有函數(shù)的一個(gè)零點(diǎn),即至少有一點(diǎn))使.

⑵介值定理:設(shè)函數(shù)在閉區(qū)間上連續(xù),且在這區(qū)間的端點(diǎn)取不同函數(shù)值,,那么對(duì)于之間任意的一個(gè)數(shù),在開(kāi)區(qū)間內(nèi)至少有一點(diǎn),使得).

⑶夾逼定理:設(shè)當(dāng)時(shí),有,且,則必有

注::表示以為的極限,則就無(wú)限趨近于零.(為最小整數(shù))

6. 幾個(gè)常用極限:

為常數(shù))

為常數(shù))

試題詳情

高考復(fù)習(xí)科目:數(shù)學(xué)      高中數(shù)學(xué)總復(fù)習(xí)(十一

復(fù)習(xí)內(nèi)容:高中數(shù)學(xué)第十一章-概率 第十二章-概率與統(tǒng)計(jì)

復(fù)習(xí)范圍:第十一章、第十二章

編寫(xiě)時(shí)間:2005-5

修訂時(shí)間:總計(jì)第三次 2005-6

                                   I. 基礎(chǔ)知識(shí)要點(diǎn)           

一、概率.

1. 概率:隨機(jī)事件A的概率是頻率的穩(wěn)定值,反之,頻率是概率的近似值.

2. 等可能事件的概率:如果一次試驗(yàn)中可能出現(xiàn)的結(jié)果有年n個(gè),且所有結(jié)果出現(xiàn)的可能性都相等,那么,每一個(gè)基本事件的概率都是,如果某個(gè)事件A包含的結(jié)果有m個(gè),那么事件A的概率.

3. ①互斥事件:不可能同時(shí)發(fā)生的兩個(gè)事件叫互斥事件. 如果事件A、B互斥,那么事件A+B發(fā)生(即A、B中有一個(gè)發(fā)生)的概率,等于事件A、B分別發(fā)生的概率和,即P(A+B)=P(A)+P(B),推廣:.

②對(duì)立事件:兩個(gè)事件必有一個(gè)發(fā)生的互斥事件叫對(duì)立事件. 例如:從1~52張撲克牌中任取一張抽到“紅桃”與抽到“黑桃”互為互斥事件,因?yàn)槠渲幸粋(gè)不可能同時(shí)發(fā)生,但又不能保證其中一個(gè)必然發(fā)生,故不是對(duì)立事件.而抽到“紅色牌”與抽到黑色牌“互為對(duì)立事件,因?yàn)槠渲幸粋(gè)必發(fā)生.

注意:i.對(duì)立事件的概率和等于1:.

ii.互為對(duì)立的兩個(gè)事件一定互斥,但互斥不一定是對(duì)立事件.

③相互獨(dú)立事件:事件A(或B)是否發(fā)生對(duì)事件B(或A)發(fā)生的概率沒(méi)有影響.這樣的兩個(gè)事件叫做相互獨(dú)立事件. 如果兩個(gè)相互獨(dú)立事件同時(shí)發(fā)生的概率,等于每個(gè)事件發(fā)生的概率的積,即P(A?B)=P(A)?P(B). 由此,當(dāng)兩個(gè)事件同時(shí)發(fā)生的概率P(AB)等于這兩個(gè)事件發(fā)生概率之和,這時(shí)我們也可稱(chēng)這兩個(gè)事件為獨(dú)立事件.例如:從一副撲克牌(52張)中任抽一張?jiān)O(shè)A:“抽到老K”;B:“抽到紅牌”則 A應(yīng)與B互為獨(dú)立事件[看上去A與B有關(guān)系很有可能不是獨(dú)立事件,但.又事件AB表示“既抽到老K對(duì)抽到紅牌”即“抽到紅桃老K或方塊老K”有,因此有.

推廣:若事件相互獨(dú)立,則.

注意:i. 一般地,如果事件A與B相互獨(dú)立,那么A 與與B,也都相互獨(dú)立.

ii. 必然事件與任何事件都是相互獨(dú)立的.

iii. 獨(dú)立事件是對(duì)任意多個(gè)事件來(lái)講,而互斥事件是對(duì)同一實(shí)驗(yàn)來(lái)講的多個(gè)事件,且這多個(gè)事件不能同時(shí)發(fā)生,故這些事件相互之間必然影響,因此互斥事件一定不是獨(dú)立事件.

④獨(dú)立重復(fù)試驗(yàn):若n次重復(fù)試驗(yàn)中,每次試驗(yàn)結(jié)果的概率都不依賴(lài)于其他各次試驗(yàn)的結(jié)果,則稱(chēng)這n次試驗(yàn)是獨(dú)立的. 如果在一次試驗(yàn)中某事件發(fā)生的概率為P,那么在n次獨(dú)立重復(fù)試驗(yàn)中這個(gè)事件恰好發(fā)生k次的概率:.

4. 對(duì)任何兩個(gè)事件都有

二、隨機(jī)變量.

1. 隨機(jī)試驗(yàn)的結(jié)構(gòu)應(yīng)該是不確定的.試驗(yàn)如果滿(mǎn)足下述條件:

①試驗(yàn)可以在相同的情形下重復(fù)進(jìn)行;②試驗(yàn)的所有可能結(jié)果是明確可知的,并且不止一個(gè);③每次試驗(yàn)總是恰好出現(xiàn)這些結(jié)果中的一個(gè),但在一次試驗(yàn)之前卻不能肯定這次試驗(yàn)會(huì)出現(xiàn)哪一個(gè)結(jié)果.

它就被稱(chēng)為一個(gè)隨機(jī)試驗(yàn).

2. 離散型隨機(jī)變量:如果對(duì)于隨機(jī)變量可能取的值,可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量.若ξ是一個(gè)隨機(jī)變量,a,b是常數(shù).則也是一個(gè)隨機(jī)變量.一般地,若ξ是隨機(jī)變量,是連續(xù)函數(shù)或單調(diào)函數(shù),則也是隨機(jī)變量.也就是說(shuō),隨機(jī)變量的某些函數(shù)也是隨機(jī)變量.

設(shè)離散型隨機(jī)變量ξ可能取的值為:

ξ取每一個(gè)值的概率,則表稱(chēng)為隨機(jī)變量ξ的概率分布,簡(jiǎn)稱(chēng)ξ的分布列.

P

有性質(zhì)①;  ②.

注意:若隨機(jī)變量可以取某一區(qū)間內(nèi)的一切值,這樣的變量叫做連續(xù)型隨機(jī)變量.例如:可以取0~5之間的一切數(shù),包括整數(shù)、小數(shù)、無(wú)理數(shù).

3. ⑴二項(xiàng)分布:如果在一次試驗(yàn)中某事件發(fā)生的概率是P,那么在n次獨(dú)立重復(fù)試驗(yàn)中這個(gè)事件恰好發(fā)生k次的概率是:[其中

于是得到隨機(jī)變量ξ的概率分布如下:我們稱(chēng)這樣的隨機(jī)變量ξ服從二項(xiàng)分布,記作~B(n?p),其中n,p為參數(shù),并記.

⑵二項(xiàng)分布的判斷與應(yīng)用.

①二項(xiàng)分布,實(shí)際是對(duì)n次獨(dú)立重復(fù)試驗(yàn).關(guān)鍵是看某一事件是否是進(jìn)行n次獨(dú)立重復(fù),且每次試驗(yàn)只有兩種結(jié)果,如果不滿(mǎn)足此兩條件,隨機(jī)變量就不服從二項(xiàng)分布.

②當(dāng)隨機(jī)變量的總體很大且抽取的樣本容量相對(duì)于總體來(lái)說(shuō)又比較小,而每次抽取時(shí)又只有兩種試驗(yàn)結(jié)果,此時(shí)可以把它看作獨(dú)立重復(fù)試驗(yàn),利用二項(xiàng)分布求其分布列.

4. 幾何分布:“”表示在第k次獨(dú)立重復(fù)試驗(yàn)時(shí),事件第一次發(fā)生,如果把k次試驗(yàn)時(shí)事件A發(fā)生記為,事A不發(fā)生記為,那么.根據(jù)相互獨(dú)立事件的概率乘法分式:于是得到隨機(jī)變量ξ的概率分布列.

1

2

3

k

P

q

qp

我們稱(chēng)ξ服從幾何分布,并記,其中

5. ⑴超幾何分布:一批產(chǎn)品共有N件,其中有M(M<N)件次品,今抽取件,則其中的次品數(shù)ξ是一離散型隨機(jī)變量,分布列為.〔分子是從M件次品中取k件,從N-M件正品中取n-k件的取法數(shù),如果規(guī)定時(shí),則k的范圍可以寫(xiě)為k=0,1,…,n.〕

⑵超幾何分布的另一種形式:一批產(chǎn)品由 a件次品、b件正品組成,今抽取n件(1≤n≤a+b),則次品數(shù)ξ的分布列為.

⑶超幾何分布與二項(xiàng)分布的關(guān)系.

設(shè)一批產(chǎn)品由a件次品、b件正品組成,不放回抽取n件時(shí),其中次品數(shù)ξ服從超幾何分布.若放回式抽取,則其中次品數(shù)的分布列可如下求得:把個(gè)產(chǎn)品編號(hào),則抽取n次共有個(gè)可能結(jié)果,等可能:個(gè)結(jié)果,故,即.[我們先為k個(gè)次品選定位置,共種選法;然后每個(gè)次品位置有a種選法,每個(gè)正品位置有b種選法] 可以證明:當(dāng)產(chǎn)品總數(shù)很大而抽取個(gè)數(shù)不多時(shí),,因此二項(xiàng)分布可作為超幾何分布的近似,無(wú)放回抽樣可近似看作放回抽樣.

試題詳情

 

高考復(fù)習(xí)科目:數(shù)學(xué)      高中數(shù)學(xué)總復(fù)習(xí)(九) 

復(fù)習(xí)內(nèi)容:高中數(shù)學(xué)第十章-排列組合

復(fù)習(xí)范圍:第十章

編寫(xiě)時(shí)間:2004-7

修訂時(shí)間:總計(jì)第三次 2005-4

一、兩個(gè)原理.

1. 乘法原理、加法原理.

2. 可以有重復(fù)元素的排列.

試題詳情

高考復(fù)習(xí)科目:數(shù)學(xué)      高中數(shù)學(xué)總復(fù)習(xí)(九) 

復(fù)習(xí)內(nèi)容:高中數(shù)學(xué)第九章-立體幾何

復(fù)習(xí)范圍:第九章

編寫(xiě)時(shí)間:2004-7

修訂時(shí)間:總計(jì)第三次 2005-4

                                   I. 基礎(chǔ)知識(shí)要點(diǎn)           

一、 平面.

1. 經(jīng)過(guò)不在同一條直線(xiàn)上的三點(diǎn)確定一個(gè)面.

注:兩兩相交且不過(guò)同一點(diǎn)的四條直線(xiàn)必在同一平面內(nèi).

2. 兩個(gè)平面可將平面分成34部分.(①兩個(gè)平面平行,②兩個(gè)平面相交)

3. 過(guò)三條互相平行的直線(xiàn)可以確定13個(gè)平面.(①三條直線(xiàn)在一個(gè)平面內(nèi)平行,②三條直線(xiàn)不在一個(gè)平面內(nèi)平行)

[注]:三條直線(xiàn)可以確定三個(gè)平面,三條直線(xiàn)的公共點(diǎn)有01個(gè).

4. 三個(gè)平面最多可把空間分成 8 部分.(X、Y、Z三個(gè)方向)

試題詳情

高考復(fù)習(xí)科目:數(shù)學(xué)      高中數(shù)學(xué)總復(fù)習(xí)(八) 

復(fù)習(xí)內(nèi)容:高中數(shù)學(xué)第八章-圓錐曲線(xiàn)方程

復(fù)習(xí)范圍:第八章

編寫(xiě)時(shí)間:2004-7

修訂時(shí)間:總計(jì)第三次 2005-4

I. 基礎(chǔ)知識(shí)要點(diǎn)

試題詳情

四川師大附中高2006屆高三數(shù)學(xué)總復(fù)習(xí)(七)實(shí)驗(yàn)修訂版

§7. 直線(xiàn)和圓的方程  知識(shí)要點(diǎn)

試題詳情

四川師大附中高2006屆高三數(shù)學(xué)總復(fù)習(xí)(六)

§6. 不 等 式  知識(shí)要點(diǎn)

1. ⑴平方平均≥算術(shù)平均≥幾何平均≥調(diào)和平均(a、b為正數(shù)):

(當(dāng)a = b時(shí)取等)

特別地,(當(dāng)a = b時(shí),

冪平均不等式:

⑵含立方的幾個(gè)重要不等式(a、b、c為正數(shù)):

,);

⑶絕對(duì)值不等式:

⑷算術(shù)平均≥幾何平均(a1、a2…an為正數(shù)):(a1=a2…=an時(shí)取等)

⑸柯西不等式:設(shè)

等號(hào)成立當(dāng)且僅當(dāng)時(shí)成立.(約定時(shí),

例如:.

⑹常用不等式的放縮法:①

2. 常用不等式的解法舉例(x為正數(shù)):

       

類(lèi)似于

試題詳情

高考復(fù)習(xí)科目:數(shù)學(xué)      高中數(shù)學(xué)總復(fù)習(xí)(五) 

復(fù)習(xí)內(nèi)容:高中數(shù)學(xué)第五章-平面向量

復(fù)習(xí)范圍:第五章

編寫(xiě)時(shí)間:2004-7

修訂時(shí)間:總計(jì)第三次 2005-4

1. 長(zhǎng)度相等且方向相同的兩個(gè)向量是相等的量.

注意:①若為單位向量,則. () 單位向量只表示向量的模為1,并未指明向量的方向.

②若,則. (√)

2. ①=      ②      ③

④設(shè)     

        (向量的模,針對(duì)向量坐標(biāo)求模) 

⑤平面向量的數(shù)量積:    ⑥     ⑦

注意:①不一定成立;.

②向量無(wú)大。ā按笥凇薄ⅰ靶∮凇睂(duì)向量無(wú)意義),向量的模有大小.

③長(zhǎng)度為0的向量叫零向量,記,與任意向量平行,的方向是任意的,零向量與零向量相等,且.

④若有一個(gè)三角形ABC,則0;此結(jié)論可推廣到邊形.

⑤若),則有. () 當(dāng)等于時(shí),,而不一定相等.

?=,=(針對(duì)向量非坐標(biāo)求模),.

⑦當(dāng)時(shí),由不能推出,這是因?yàn)槿我慌c垂直的非零向量,都有?=0.

⑧若,,則(×)當(dāng)等于時(shí),不成立.

3. ①向量非零向量共線(xiàn)的充要條件是有且只有一個(gè)實(shí)數(shù),使得(平行向量或共線(xiàn)向量).

當(dāng)共線(xiàn)同向:當(dāng)共線(xiàn)反向;當(dāng)則為與任何向量共線(xiàn).

注意:若共線(xiàn),則  (×)

的投影,夾角為,則,  (√)

②設(shè)=,

*    

*

③設(shè),則A、B、C三點(diǎn)共線(xiàn)=

*)=)(

*)?()=()?(

④兩個(gè)向量、的夾角公式:

⑤線(xiàn)段的定比分點(diǎn)公式:(

設(shè) =(或=),且的坐標(biāo)分別是,則

 

推廣1:當(dāng)時(shí),得線(xiàn)段的中點(diǎn)公式:

 

推廣2:對(duì)應(yīng)終點(diǎn)向量).

三角形重心坐標(biāo)公式:△ABC的頂點(diǎn),重心坐標(biāo)

注意:在△ABC中,若0為重心,則,這是充要條件.

⑥平移公式:若點(diǎn)P按向量=平移到P,則

4. ⑴正弦定理:設(shè)△ABC的三邊為ab、c,所對(duì)的角為A、B、C,則.

⑵余弦定理:

⑶正切定理:

⑷三角形面積計(jì)算公式:

設(shè)△ABC的三邊為a,b,c,其高分別為ha,hb,hc,半周長(zhǎng)為P,外接圓、內(nèi)切圓的半徑為R,r.

S=1/2aha=1/2bhb=1/2chc                 S=Pr      S=abc/4R

S=1/2sinC?ab=1/2ac?sinB=1/2cb?sin ⑤S=  [海倫公式]  

S=1/2(b+c-ara[如下圖]=1/2b+a-crc=1/2a+c-brb

[注]:到三角形三邊的距離相等的點(diǎn)有4個(gè),一個(gè)是內(nèi)心,其余3個(gè)是旁心.

 

 

如圖:                                           圖1中的ISABC的內(nèi)心, S=Pr

                                                 圖2中的ISABC的一個(gè)旁心,S=1/2b+c-ara

                                                    

 

                                                                         

                                                                           

附:三角形的五個(gè)“心”;

重心:三角形三條中線(xiàn)交點(diǎn).

外心:三角形三邊垂直平分線(xiàn)相交于一點(diǎn).

內(nèi)心:三角形三內(nèi)角的平分線(xiàn)相交于一點(diǎn).

垂心:三角形三邊上的高相交于一點(diǎn).

旁心:三角形一內(nèi)角的平分線(xiàn)與另兩條內(nèi)角的外角平分線(xiàn)相交一點(diǎn).

⑸已知⊙O是△ABC的內(nèi)切圓,若BC=a,AC=b,AB=c [注:s為△ABC的半周長(zhǎng),即]

則:①AE==1/2(b+c-a)                                                

BN==1/2(a+c-b

FC==1/2(a+b-c

綜合上述:由已知得,一個(gè)角的鄰邊的切線(xiàn)長(zhǎng),等于半周長(zhǎng)減去對(duì)邊(如圖4).                                 

特例:已知在RtABC,c為斜邊,則內(nèi)切圓半徑r=(如圖3).           

⑹在△ABC中,有下列等式成立.

證明:因?yàn)?sub>所以,所以,結(jié)論!

⑺在△ABC中,DBC上任意一點(diǎn),則.

證明:在△ABCD中,由余弦定理,有

在△ABC中,由余弦定理有②,②代入①,化簡(jiǎn)

可得,(斯德瓦定理)

①若ADBC上的中線(xiàn),

②若AD是∠A的平分線(xiàn),,其中為半周長(zhǎng);

③若ADBC上的高,,其中為半周長(zhǎng).

⑻△ABC的判定:

ABC為直角△∠A + ∠B =

ABC為鈍角△∠A + ∠B<

ABC為銳角△∠A + ∠B>

附:證明:,得在鈍角△ABC中,

⑼平行四邊形對(duì)角線(xiàn)定理:對(duì)角線(xiàn)的平方和等于四邊的平方和.

試題詳情


同步練習(xí)冊(cè)答案