題目列表(包括答案和解析)
(本小題滿分12分)
已知雙曲線C的方程為,離心率,頂點(diǎn)到漸近線的距離為。
(I)求雙曲線C的方程;
(II)如圖,P是雙曲線C上一點(diǎn),A,B兩點(diǎn)在雙曲線C的兩條漸近線上,且分別位于第一、二象限,若,求面積的取值范圍。
(本小題滿分13分)
如圖,ABCD的邊長為2的正方形,直線l與平面ABCD平行,g和F式l上的兩個不同點(diǎn),且EA=ED,F(xiàn)B=FC, 和是平面ABCD內(nèi)的兩點(diǎn),和都與平面ABCD垂直,
(Ⅰ)證明:直線垂直且平分線段AD:w.w.w.k.s.5.u.c.o.m
(Ⅱ)若∠EAD=∠EAB=60°,EF=2,求多面
體ABCDEF的體積。
(本小題共14分)
已知橢圓的中點(diǎn)在原點(diǎn)O,焦點(diǎn)在x軸上,點(diǎn)是其左頂點(diǎn),點(diǎn)C在橢圓上且
(I)求橢圓的方程;
(II)若平行于CO的直線和橢圓交于M,N兩個不同點(diǎn),求面積的最大值,并求此時直線的方程.
(本小題滿分12分)
設(shè)、分別是橢圓的左、右焦點(diǎn).
(1)若是該橢圓上的一個動點(diǎn),求的取值范圍;
(2)設(shè)過定點(diǎn)的直線與橢圓交于不同的兩點(diǎn)M、N,且∠為銳角(其中為坐標(biāo)原點(diǎn)),求直線的斜率的取值范圍.
(3)設(shè)是它的兩個頂點(diǎn),直線與AB相交于點(diǎn)D,與橢圓相交于E、F兩點(diǎn).求四邊形面積的最大值.
(本小題滿分12分)
如圖,在三棱錐D-ABC中,已知△BCD是正三角
形,AB⊥平面BCD,AB=BC=a,E為BC的中點(diǎn),
F在棱AC上,且AF=3FC.
(1)求三棱錐D-ABC的表面積;
(2)求證AC⊥平面DEF;
(3)若M為BD的中點(diǎn),問AC上是否存在一點(diǎn)N,
使MN∥平面DEF?若存在,說明點(diǎn)N的位置;若不
存在,試說明理由.
一.選擇題:本大題共12小題,每小題5分,共60分。
(1)B (2)A (3)B (4)A (5)C (6)D
(7)A (8)C (9)B (10)A (11)D (12)B
二.填空題:本大題共4小題,每小題5分,共20分。
(13) (14) (15)
(16)
三.解答題:本大題共6小題,共70分,解答應(yīng)寫出文字說明,證明過程或演算步驟。
(17)(本小題滿分10分)
(Ⅰ)解法一:由正弦定理得.
故 ,
又 ,
故 ,
即 ,
故 .
因為 ,
故 ,
又 為三角形的內(nèi)角,
所以 . ………………………5分
解法二:由余弦定理得 .
將上式代入 整理得.
故 ,
又 為三角形內(nèi)角,
所以 . ………………………5分
(Ⅱ)解:因為.
故 ,
由已知 得
又因為 .
得 ,
所以 ,
解得 . ………………………………………………10分
(18)(本小題滿分12分)
(Ⅰ)證明:
∵面,面,
∴.
又∵底面是正方形,
∴.
又∵,
∴面,
又∵面,
∴平面平面. ………………………………………6分
(Ⅱ)解法一:如圖建立空間直角坐標(biāo)系.
設(shè),則,在中,.
∴、、、、、.
∵為的中點(diǎn),,
∴.
設(shè)是平面的一個法向量.
則由 可求得.
由(Ⅰ)知是平面的一個法向量,
且,
∴,即.
∴二面角的大小為. ………………………………………12分
解法二:
設(shè),則,
在中,.
設(shè),連接,過作于,
連結(jié),由(Ⅰ)知面.
∴在面上的射影為,
∴.
故為二面角的平面角.
在中,,,.
∴,
∴.
∴.
即二面角的大小為. …………………………………12分
(19)(本小題滿分12分)
(Ⅰ)解:設(shè)、兩項技術(shù)指標(biāo)達(dá)標(biāo)的概率分別為、.
由題意得: …………2分
∴.
即一個零件經(jīng)過檢測為合格品的概率為. …………6分
(Ⅱ)設(shè)該工人一個月生產(chǎn)的20件新產(chǎn)品中合格品有件,獲得獎金元,則
. ………………8分
~,, ………………10分
.
即該工人一個月獲得獎金的數(shù)學(xué)期望是800元. ………………12分
(20)(本小題滿分12分)
解:(Ⅰ)設(shè)雙曲線方程為,,
由,及勾股定理得,
由雙曲線定義得 .
則. ………………………………………5分
(Ⅱ),,故雙曲線的兩漸近線方程為.
因為過, 且與同向,故設(shè)的方程為,
則
又的面積,所以.
可得與軸的交點(diǎn)為.
設(shè)與交于點(diǎn),與交于點(diǎn),
由得;由得.
故,
,,
從而.
故的取值范圍是. …………………………12分
(21)(本小題滿分12分)
解:(Ⅰ),
.
又因為函數(shù)在上為增函數(shù),
在上恒成立,等價于
在上恒成立.
又,
故當(dāng)且僅當(dāng)時取等號,而,
的最小值為. ………………………………………6分
(Ⅱ)由已知得:函數(shù)為奇函數(shù),
, , ………………………………7分
.
切點(diǎn)為,其中,
則切線的方程為: ……………………8分
由,
得.
又,
,
,
,
或,由題意知,
從而.
,
,
. ………………………………………12分
(22)(本小題滿分12分)
(Ⅰ)解: 由,得
,. …………………………3分
(Ⅱ)由(Ⅰ)歸納得, ………………………4分
用數(shù)學(xué)歸納法證明:
①當(dāng)時,成立.
②假設(shè)時,成立,
那么
所以當(dāng)時,等式也成立.
由①、②得對一切成立. ……………8分
(Ⅲ)證明: 設(shè),則,
所以在上是增函數(shù).
故.
即.
因為,
故.
=.…………12分
本資料由《七彩教育網(wǎng)》www.7caiedu.cn 提供!
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com