題目列表(包括答案和解析)
如圖,在直角坐標(biāo)系中,是原點,三點的坐標(biāo)分別,四邊形是梯形,點同時從原點出發(fā),分別作勻速運動,其中點沿向終點運動,速度為每秒個單位,點沿向終點運動,當(dāng)這兩點有一點到達(dá)自己的終點時,另一點也停止運動.
(1)求直線的解析式.
(2)設(shè)從出發(fā)起,運動了秒.如果點的速度為每秒個單位,試寫出點的坐標(biāo),并寫出此時 的取值范圍.
(3)設(shè)從出發(fā)起,運動了秒.當(dāng),兩點運動的路程之和恰好等于梯形的周長的一半,這時,直線能否把梯形的面積也分成相等的兩部分,如有可能,請求出的值;如不可能,請說明理由.
【解析】(1)根據(jù)待定系數(shù)法就可以求出直線OC的解析式(2)本題應(yīng)分Q在OC上,和在CB上兩種情況進(jìn)行討論.即0≤t≤5和5<t≤10兩種情況(3)P、Q兩點運動的路程之和可以用t表示出來,梯形OABC的周長就可以求得.當(dāng)P、Q兩點運動的路程之和恰好等于梯形OABC的周長的一半,就可以得到一個關(guān)于t的方程,可以解出t的值.梯形OABC的面積可以求出,梯形OCQP的面積可以用t表示出來.把t代入可以進(jìn)行檢驗
如圖,在直角坐標(biāo)系中,是原點,三點的坐標(biāo)分別,四邊形是梯形,點同時從原點出發(fā),分別作勻速運動,其中點沿向終點運動,速度為每秒個單位,點沿向終點運動,當(dāng)這兩點有一點到達(dá)自己的終點時,另一點也停止運動.
(1)求直線的解析式.
(2)設(shè)從出發(fā)起,運動了秒.如果點的速度為每秒個單位,試寫出點的坐標(biāo),并寫出此時 的取值范圍.
(3)設(shè)從出發(fā)起,運動了秒.當(dāng),兩點運動的路程之和恰好等于梯形的周長的一半,這時,直線能否把梯形的面積也分成相等的兩部分,如有可能,請求出的值;如不可能,請說明理由.
【解析】(1)根據(jù)待定系數(shù)法就可以求出直線OC的解析式(2)本題應(yīng)分Q在OC上,和在CB上兩種情況進(jìn)行討論.即0≤t≤5和5<t≤10兩種情況(3)P、Q兩點運動的路程之和可以用t表示出來,梯形OABC的周長就可以求得.當(dāng)P、Q兩點運動的路程之和恰好等于梯形OABC的周長的一半,就可以得到一個關(guān)于t的方程,可以解出t的值.梯形OABC的面積可以求出,梯形OCQP的面積可以用t表示出來.把t代入可以進(jìn)行檢驗
近年來,大學(xué)生就業(yè)日益困難.為了扶持大學(xué)生自主創(chuàng)業(yè),某市政府提供了80萬元無息貸款,用于某大學(xué)生開辦公司生產(chǎn)并銷售自主研發(fā)的一種電子產(chǎn)品,并約定用該公司經(jīng)營的利潤逐步償還無息貸款.已知該產(chǎn)品的生產(chǎn)成本為每件40元,員工每人每月的工資為2500元,公司每月需支付其他費用15萬元.該產(chǎn)品每月銷售量y(萬件)與銷售單價x(元)之間的函數(shù)關(guān)系如圖所示.
(1)分別求出40<x≤60;60<x<80時,月銷售量y(萬件)與銷售
單價x(元)之間的函數(shù)關(guān)系;
(2)當(dāng)銷售單價定為50元時,為保證公司月利潤達(dá)到5萬元
(利潤=銷售額—生產(chǎn)成本—員工工資—其它費用),該公司
可安排員工多少人?
(3)若該公司有80名員工,則該公司最早可在幾月后還清貸款?
【解析】(1)利用圖象上點的坐標(biāo)利用待定系數(shù)法代入y=kx+b,求出一次函數(shù)解析式即可;
(1) 根據(jù)利潤=銷售額—生產(chǎn)成本—員工工資—其它費用列方程求出解
(3)分兩種情況進(jìn)行討論:當(dāng)時,當(dāng)時得出結(jié)論
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com