聽下面一段對話.回答第13-15題. W: Excuse me, Da Ming. It must be hard work as a secondary school student now. M: It certainly is. I'm going to have the most important examination. And I must get ready for every subject for it. W: I guess you can't have enough sleep. M: Yes. I have to get up at six o'clock every morning and go to bed very late. W: Why do you get up so early then? M: Because I want to remember and review something at that time. W: Does your mother get up at the same time as you? M: Yes, she cooks breakfast for me. She wants me to keep healthy. W: Your mother is so kind. Well, how do you spend your free time? M: Free time? I have no free time. I have lessons all the time. W: I really hope it goes well after your hard work. M: Thank you. 聽短文.從所給選項中選出最佳答案. I went to town yesterday and decided to stop at the bank to see Alice Green. I thought she might have time to go to lunch with me. When I got to the bank, they told me that she had just been out for a few minutes. I asked them if she would be back by 11:30 or 11:45, and they said yes. I had some time. So I decided to wait for her. Then I walked over to some chairs by the windows and sat down. I decided to watch the front door because I knew she would come back in that way. I waited and waited, but she didn't come through that door. Finally I decided not to wait any longer. It was 12:30, and I was sure that she wouldn't be back until after lunch. I got up and as I started to walk towards the door, somebody called my name. I turned around and was surprised to find out that was Alice. When I said that someone had told me she had been out, she told me that she hadn't left her office all the morning. 查看更多

 

題目列表(包括答案和解析)

閱讀理解題:一次數學興趣小組的活動課上,師生有下面一段對話,請你閱讀完后再解答下面問題:
老師:同學們,今天我們來探索如下方程的解法:(x2-x)2-8(x2-x)+12=0.
學生甲:老師,先去括號,再合并同類項,行嗎?
老師:這樣,原方程可整理為x4-2x3-7x2+8x+12=0,次數變成了4次,用現有的知識無法解答.同學們再觀察觀察,看看這個方程有什么特點?
學生乙:我發(fā)現方程中x2-x是整體出現的,最好不要去括號!
老師:很好.如果我們把x2-x看成一個整體,用y來表示,那么原方程就變成y2-8y+12=0.
全體同學:咦,這不是我們學過的一元二次方程嗎?
老師:大家真會觀察和思考,太棒了!顯然一元二次方程y2-8y+12=0的解是y1=6,y2=2,就有x2-x=6或x2-x=2.
學生丙:對啦,再解這兩個方程,可得原方程的根x1=3,x2=-2,x3=2,x4=-1,嗬,有這么多根。
老師:同學們,通常我們把這種方法叫做換元法.在這里,使用它最大的妙處在于降低了原方程的次數,這是一種很重要的轉化方法.
全體同學:OK!換元法真神奇!
現在,請你用換元法解下列分式方程(
x
x-1
)2-5(
x
x-1
)-6=0

查看答案和解析>>

27、閱讀下面一段材料,回答問題.
我國宋朝數學家楊輝在他的著作《詳解九章算法》中提出右下表,此表揭示了(a+b)n(n為非負整數)展開式的各項系數的規(guī)律,例如:
(a+b)0=1,它只有一項,系數為1;
(a+b)1=a+b,它有兩項,系數分別為1,1;
(a+b)2=a2+2ab+b2,它有三項,系數分別為1,2,1;
(a+b)3=a3+3a2b+3ab2+b3,它有四項,系數分別為1,3,3,1;

根據以上規(guī)律,(a+b)4展開式共有五項,系數分別為
1
4
,
6
,
4
1

計算:(a+b)4

查看答案和解析>>

閱讀理解題:一次數學興趣小組的活動課上,師生有下面一段對話,請你閱讀完后再解答下面問題:
老師:同學們,今天我們來探索如下方程的解法:(x2-x)2-8(x2-x)+12=0.
學生甲:老師,先去括號,再合并同類項,行嗎?
老師:這樣,原方程可整理為x4-2x3-7x2+8x+12=0,次數變成了4次,用現有的知識無法解答.同學們再觀察觀察,看看這個方程有什么特點?
學生乙:我發(fā)現方程中x2-x是整體出現的,最好不要去括號!
老師:很好.如果我們把x2-x看成一個整體,用y來表示,那么原方程就變成y2-8y+12=0.
全體同學:咦,這不是我們學過的一元二次方程嗎?
老師:大家真會觀察和思考,太棒了!顯然一元二次方程y2-8y+12=0的解是y1=6,y2=2,就有x2-x=6或x2-x=2.
學生丙:對啦,再解這兩個方程,可得原方程的根x1=3,x2=-2,x3=2,x4=-1,嗬,有這么多根。
老師:同學們,通常我們把這種方法叫做換元法.在這里,使用它最大的妙處在于降低了原方程的次數,這是一種很重要的轉化方法.
全體同學:OK!換元法真神奇!
現在,請你用換元法解下列分式方程

查看答案和解析>>

閱讀下面一段材料,回答問題.
我國宋朝數學家楊輝在他的著作《詳解九章算法》中提出下表,此表揭示了(a+b)n(n為非負整數)展開式的各項系數的規(guī)律,例如:
(a+b)0=1,它只有一項,系數為1;
(a+b)1=a+b,它有兩項,系數分別為1,1;
(a+b)2=a2+2ab+b2,它有三項,系數分別為1,2,1;
(a+b)3=a3+3a2b+3ab2+b3,它有四項,系數分別為1,3,3,1;

根據以上規(guī)律,(a+b)4展開式共有五項,系數分別為_,__,__
計算:(a+b)4

查看答案和解析>>

閱讀理解題:一次數學興趣小組的活動課上,師生有下面一段對話,請你閱讀完后再解答下面問題:
老師:同學們,今天我們來探索如下方程的解法:(x2-x)2-8(x2-x)+12=0.
學生甲:老師,先去括號,再合并同類項,行嗎?
老師:這樣,原方程可整理為x4-2x3-7x2+8x+12=0,次數變成了4次,用現有的知識無法解答.同學們再觀察觀察,看看這個方程有什么特點?
學生乙:我發(fā)現方程中x2-x是整體出現的,最好不要去括號!
老師:很好.如果我們把x2-x看成一個整體,用y來表示,那么原方程就變成y2-8y+12=0.
全體同學:咦,這不是我們學過的一元二次方程嗎?
老師:大家真會觀察和思考,太棒了!顯然一元二次方程y2-8y+12=0的解是y1=6,y2=2,就有x2-x=6或x2-x=2.
學生丙:對啦,再解這兩個方程,可得原方程的根x1=3,x2=-2,x3=2,x4=-1,嗬,有這么多根。
老師:同學們,通常我們把這種方法叫做換元法.在這里,使用它最大的妙處在于降低了原方程的次數,這是一種很重要的轉化方法.
全體同學:OK!換元法真神奇!
現在,請你用換元法解下列分式方程

查看答案和解析>>


同步練習冊答案