72.在解析幾何中.研究兩條直線的位置關系時.有可能這兩條直線重合.而在立體幾何中一般提到的兩條直線可以理解為它們不重合. 查看更多

 

題目列表(包括答案和解析)

已知拋物線C:與圓有一個公共點A,且在A處兩曲線的切線與同一直線l

(I)     求r;

(II)   設m、n是異于l且與C及M都相切的兩條直線,m、n的交點為D,求D到l的距離。

【解析】本試題考查了拋物線與圓的方程,以及兩個曲線的公共點處的切線的運用,并在此基礎上求解點到直線的距離。

【點評】該試題出題的角度不同于平常,因為涉及的是兩個二次曲線的交點問題,并且要研究兩曲線在公共點出的切線,把解析幾何和導數的工具性結合起來,是該試題的創(chuàng)新處。另外對于在第二問中更是難度加大了,出現了另外的兩條公共的切線,這樣的問題對于我們以后的學習也是一個需要練習的方向。

 

 

查看答案和解析>>

平面直角坐標系內的向量都可以用一有序實數對唯一表示,這使我們想到可以用向量作為解析幾何的研究工具.如圖,設直線l的傾斜角為α(α90°).在l上任取兩個不同的點,,不妨設向量的方向是向上的,那么向量的坐標是().過原點作向量,則點P的坐標是(),而且直線OP的傾斜角也是α.根據正切函數的定義得

,

這就是《數學2》中已經得到的斜率公式.上述推導過程比《數學2》中的推導簡捷.你能用向量作為工具討論一下直線的有關問題嗎?例如:

(1)過點,平行于向量的直線方程;

(2)向量(A,B)與直線的關系;

(3)設直線的方程分別是

,

那么,的條件各是什么?如果它們相交,如何得到它們的夾角公式?

(4)到直線的距離公式如何推導?

查看答案和解析>>


同步練習冊答案