①學法:觀察法.講授法及討論法. ②教具:多媒體. 第一課時 查看更多

 

題目列表(包括答案和解析)

通過研究學生的學習行為,專家發(fā)現(xiàn),學生的注意力著老師講課時間的變化而變化,講課開始時,學生的興趣激增;中間有一段時間,學生的興趣保持較理想的狀態(tài),隨后學生的注意力開始分散,設f(t)表示學生注意力隨時間t(分鐘)的變化規(guī)律(f(t)越大,表明學生注意力越集中),經(jīng)過實驗分析得知:f(t)=
-t2+24t+100,0<t≤10
240,10<t≤20
-7t+380,20<t≤40

(1)講課開始后多少分鐘,學生的注意力最集中?能持續(xù)多少分鐘?
(2)講課開始后5分鐘與講課開始后25分鐘比較,何時學生的注意力更集中?
(3)一道數(shù)學難題,需要講解24分鐘,并且要求學生的注意力至少達到180,那么經(jīng)過適當安排,教師能否在學生達到所需的狀態(tài)下講授完這道題目?

查看答案和解析>>

經(jīng)研究發(fā)現(xiàn),學生的接受能力依賴于老師引入概念和描述總量所用的時間,開始講題時,學生的興趣保持較理想的狀態(tài),隨后學生的注意力開始分散.分析結(jié)果和實驗表明,用f(x)表示學生掌握和接受概念的能力,x表示提出和講授概念的時間(單位:分),有以下的公式:
f(x)=
0.1x2+2.6x+43,(0<x≤10)
59,(10<x≤16)
-3x+107,(16<x≤30)

(1)開講后5分鐘與開講后20分鐘比較,學生的接受能力何時強呢?
(2)開講后多少分鐘,學生的接受能力最強?能維持多長的時間?
(3)若講解這道數(shù)學題需要55的接受能力以及13分鐘的時間,老師能否及時在學生一直達到所需接受能力的狀態(tài)下講完這道題?

查看答案和解析>>

通過研究學生的學習行為,心理學家發(fā)現(xiàn),學生接受能力依賴于老師引入概念和描述問題所用的時間,講座開始時,學生的興趣激增,中間有一段不太長的時間,學生的興趣保持理想的狀態(tài),隨后學生的注意力開始分散.分析結(jié)果和實驗表明,用f(x)表示學生掌握和接受概念的能力(f(x)的值越大,表示接受能力越強),x表示提出和講授概念的時間(單位:分),可以有以下公式:f(x)=
-0.1x2+2.6x+43
59
-3x+107
(0<x≤10)
(10<x≤16)
(16<x≤30)

(1)開講多少分鐘后,學生的接受能力最強?能維持多少分鐘?
(2)開講5分鐘與開講20分鐘比較,學生的接受能力何時強一些?
(3)一個數(shù)學難題,需要55的接受能力以及13分鐘的時間,老師能否及時在學生一直達到所需接受能力的狀態(tài)下講授完這個難題?

查看答案和解析>>

已知數(shù)列{an}的前幾項為:
1
2
,-2,
9
2
,-8,
25
2
,-18…
用觀察法寫出滿足數(shù)列的一個通項公式an=
(-1)n-1
n2
2
,或(-1)n+1
n2
2
(注意,本題答案有多種可能,只要學生給出的通項公式計算出的前幾項滿足就可以判正確)
(-1)n-1
n2
2
,或(-1)n+1
n2
2
(注意,本題答案有多種可能,只要學生給出的通項公式計算出的前幾項滿足就可以判正確)

查看答案和解析>>

根據(jù)下列條件分別求出函數(shù)f(x)的解析式
觀察法:(1)f(x+
1
x
)=x2+
1
x2
求f(x);
換元法:(2)f(x-2)=x2+3x+1求f(x);
待定系數(shù)法:(3)已知f(x)是一次函數(shù),且滿足3f(x+1)-2f(x-1)=2x+17,求f(x);
復合函數(shù)的解析式:(4)已知f(x)=x2-1,g(x)=
x+1
,求f[g(x)]]和g[f(x)]的解析式,交代定義域.

查看答案和解析>>


同步練習冊答案