C. D. 查看更多

 

題目列表(包括答案和解析)

C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系下,已知圓O:和直線
(1)求圓O和直線的直角坐標(biāo)方程;(2)當(dāng)時(shí),求直線與圓O公共點(diǎn)的一個(gè)極坐標(biāo).
D.選修4-5:不等式證明選講
對(duì)于任意實(shí)數(shù),不等式恒成立,試求實(shí)數(shù)的取值范圍.

查看答案和解析>>

C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系下,已知圓O:和直線
(1)求圓O和直線的直角坐標(biāo)方程;(2)當(dāng)時(shí),求直線與圓O公共點(diǎn)的一個(gè)極坐標(biāo).
D.選修4-5:不等式證明選講
對(duì)于任意實(shí)數(shù),不等式恒成立,試求實(shí)數(shù)的取值范圍.

查看答案和解析>>

C

[解析] 由基本不等式,得abab,所以ab,故B錯(cuò);≥4,故A錯(cuò);由基本不等式得,即,故C正確;a2b2=(ab)2-2ab=1-2ab≥1-2×,故D錯(cuò).故選C.

查看答案和解析>>

定義域?yàn)?/span>R的函數(shù)滿足,且當(dāng)時(shí),,則當(dāng)時(shí),的最小值為( )

A B C D

 

查看答案和解析>>

.過點(diǎn)作圓的弦,其中弦長為整數(shù)的共有  ( 。    

A.16條          B. 17條        C. 32條            D. 34條

 

查看答案和解析>>

 

一、

ABCBA  CDB

二、

9.―2       10.4      11.16      12.36       13.   

14.    15.64

三、

16.解:(1)

,

…………………………2分

………………4分

取得最大值為,

…………………………6分

(2)設(shè)內(nèi)角A、B、C的對(duì)邊分別為a、b、c

由(1)知:

由余弦定理得:

……………………8分

,

      

       當(dāng)且僅當(dāng)    12分

17.解:記事件A、B、C分別表示小明在甲、乙、丙三家公司面試合格,則

      

   (I)三家公司至少有一家面試合格的概率為:

      

       在三家公司至少有一家面試合格的概率為0.96.       6分

   (II)任兩家公司至少有一家面試合格的概率等價(jià)于在三家公司至少有兩家面試合格的概率,

      

             8分

      

       在任意兩家公司至少有一家面試合格的概率為0.7        12分

18.解 :(I)D1在平面ABCD上的射影為O,

             2分

       點(diǎn)O為DC的中點(diǎn),DC=2,

       OC=1.

       又

       同理

      

       平面D1AO.      4分

   (II)平面ABCD,

           

       又平面D1DO.

       ,

       ,

       在平面D1DO內(nèi),作

       垂足為H,則平面ADD1A1

       線段OH的長為點(diǎn)O到平面ADD1A1的距離.       6分

       平面ABCD,

       在平面ABCD上的射影為DO.

       為側(cè)棱DD1與底面ABCD所成的角,

      

       在

       即點(diǎn)O到平面ADD1A1的距離為    8分

<li id="me42a"><cite id="me42a"></cite></li>
  •        平面ABCD,

          

           又平面AOD1,

           又

           為二面角C―AD1―O的平面角      10分

           在

          

           在

          

           取D1C的中點(diǎn)E,連結(jié)AE,

           則

          

          

           在

           二面角C―AD1―O的大小為      12分

    19.解:(I)

               3分

       (II)因?yàn)?sub>

          

           歸納得

           則     5分

          

          

                 7分

       (III)當(dāng)

                 9分

           則

          

                  13分

    20.解:(I)設(shè)

          

          

                  3分

           代入為P點(diǎn)的軌 跡方程.

           當(dāng)時(shí),P點(diǎn)的軌跡是圓.     6分

       (II)由題設(shè)知直線的方程為,

           設(shè)

           聯(lián)立方程組

           消去     8分

    * 方程組有兩個(gè)不等解,

          

          

           而

               10分

           當(dāng)

           當(dāng)

           當(dāng)

           綜上,      13分

    21.解:(1)

              1分

           依題意有

          

           解得

                4分

       (2).

           依題意,是方程的兩個(gè)根,

          

          

          

                   6分

           設(shè)

           由;

           由

           所以函數(shù)在區(qū)間上是增函數(shù),在區(qū)間[4,6]上是減函數(shù).

           有極大值為96,

           上的最大值為96.

                  9分

       (III)的兩根,

           .

          

           ∴

    =          11分

           ∵,

          

           即

          

           成立          13分

     

     


    同步練習(xí)冊(cè)答案