(Ⅰ)求所取直線的傾斜角大于的概率, 查看更多

 

題目列表(包括答案和解析)

解::因為,所以f(1)f(2)<0,因此f(x)在區(qū)間(1,2)上存在零點,又因為y=與y=-在(0,+)上都是增函數(shù),因此在(0,+)上是增函數(shù),所以零點個數(shù)只有一個方法2:把函數(shù)的零點個數(shù)個數(shù)問題轉(zhuǎn)化為判斷方程解的個數(shù)問題,近而轉(zhuǎn)化成判斷交點個數(shù)問題,在坐標系中畫出圖形


由圖看出顯然一個交點,因此函數(shù)的零點個數(shù)只有一個

袋中有50個大小相同的號牌,其中標著0號的有5個,標著n號的有n個(n=1,2,…9),現(xiàn)從袋中任取一球,求所取號碼的分布列,以及取得號碼為偶數(shù)的概率.

查看答案和解析>>

拋擲甲、乙兩枚質(zhì)地均勻且四面上分別標有1,2,3,4的正四面體,其底面落于桌面,記所得的數(shù)字分別為A,B.(注:正四面體是共有四個面,且每個面都是正三角形的空間幾何體)
(1)求
AB
為整數(shù)的概率;
(2)若在構成的所有不同直線Ax-By=0中任取一條,求能使直線的傾斜角小于45°的概率.

查看答案和解析>>

如圖所示的曲線是由部分拋物線和曲線“合成”的,直線與曲線相切于點,與曲線相切于點,記點的橫坐標為,其中

(1)當時,求的值和點的坐標;

(2)當實數(shù)取何值時,?并求出此時直線的方程.

 

查看答案和解析>>

下表是某單位在2013年1—5月份用水量(單位:百噸)的一組數(shù)據(jù):

月份

1

2

3

4

5

用水量

4 5

4

3

2 5

1 8

 

(Ⅰ)若由線性回歸方程得到的預測數(shù)據(jù)與實際檢驗數(shù)據(jù)的誤差不超過0 05,視為“預測可靠”,通過公式得,那么由該單位前4個月的數(shù)據(jù)中所得到的線性回歸方程預測5月份的用水量是否可靠?說明理由;

(Ⅱ)從這5個月中任取2個月的用水量,求所取2個月的用水量之和小于7(單位:百噸)的概率

參考公式:回歸直線方程是:,

 

查看答案和解析>>

拋擲甲、乙兩枚質(zhì)地均勻且四面上分別標有1,2,3,4的正四面體,其底面落于桌面,記所得的數(shù)字分別為A,B.(注:正四面體是共有四個面,且每個面都是正三角形的空間幾何體)
(1)求
A
B
為整數(shù)的概率;
(2)若在構成的所有不同直線Ax-By=0中任取一條,求能使直線的傾斜角小于45°的概率.

查看答案和解析>>

一、選擇題

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

D

C

C

A

A

D

C

B

A

D

B

B

二、填空題

13.   14.     15.7500    16.

三、解答題

17.證明:(Ⅰ)取AB的中點M,連FM,MC, ┅┅┅┅2分

∵ F、M分別是AE、BA的中點  

∴ FM∥EB, FM=EB=CD, ┅┅┅┅┅┅┅4分

∵ EB、CD都垂直于平面ABC 

∴ CD∥BE∴ CD∥FM,

∴四邊形FMCD是平行四邊形,

∴ FD∥MC.又∵

∴FD∥平面ABC                 ┅┅┅┅┅┅┅6分          

(Ⅱ)∵M是AB的中點,CA=CB,

∴CM⊥AB, ┅┅┅┅┅┅┅8分

又  CM⊥BE, ∴CM⊥面EAB, ∴CM⊥BF, ∴FD⊥BF, ┅┅┅┅┅┅┅10分

∵F是AE的中點, EB=AB∴BF⊥EA. ∴BF⊥平面ADE      ┅┅┅┅┅┅┅12分

 

18解:

(Ⅰ)實數(shù)對

共16種不同的情況,有16條不同的直線.┅┅┅┅┅┅┅4分

當實數(shù)對時,直線的斜率,直線傾斜角大于

所以直線傾斜角大于的概率為;┅┅┅┅┅┅┅6分

(Ⅱ)直線在x軸上的截距與在y軸上截距之差,即,┅┅┅┅┅┅┅8分

當實數(shù)對,┅┅┅┅┅┅┅10分

所以直線在x軸上的截距與在y軸上截距之差小于7的概率為. ┅┅┅┅12分

 

19解:(1)

┅┅┅┅┅┅┅4分

因為,所以,所以,

的取值范圍為 ┅┅┅┅┅┅┅6分

(Ⅱ)因為,所以 ┅┅┅┅┅┅┅8分

所以的最小值為,當為等邊三角形時取到. ┅┅┅┅┅┅┅12分

20解:(Ⅰ)的首項為,所以 ┅┅┅┅┅┅┅3分

所以,所以是等差數(shù)列,首項為,公差為1

┅┅┅┅┅┅┅6分

(Ⅱ)由(Ⅰ)可得,即 ┅┅┅┅┅┅┅7分

  ①

  ②┅┅┅┅┅┅9分

①-②可得

所以,所以┅┅12分

21解:(Ⅰ)由題意可知,可行域是以及點為頂點的三角形,∵,∴為直角三角形,                 ┅┅┅┅┅┅┅2分

∴外接圓C以原點O為圓心,線段A1A2為直徑,故其方程為

2a=4,∴a=2.又,可得

∴所求圓C與橢圓C1的方程分別是. ┅┅┅┅┅┅┅4分

(Ⅱ2) F,設,,

時,Q點為(),可得,∴PFOQ.

時,,可以解得,也有PFOQ.  ┅┅┅6分

時,OP的斜率為,則切線PQ的斜率為,則PQ的方程為:化簡為:,          ┅┅┅8分

交得Q點坐標為             ┅┅┅10分

∴PFOQ.

綜上,直線PF與直線OQ垂直.                       ┅┅┅12分

22解:(Ⅰ) ┅┅┅┅┅┅┅2分

①當,即,在R上有,所以在R單調(diào)遞增;┅┅┅┅┅┅┅4分

②當,即,當時,在上有,所以在R單調(diào)遞增;當時,在上有,所以在R單調(diào)遞增;┅┅┅┅┅┅┅6分

③當,即

兩個根分別為,所以在上有,即單調(diào)遞增;

上有,即單調(diào)遞減.┅┅┅┅┅┅┅8分

(Ⅱ)由(Ⅰ)可知當時函數(shù)有極值,

時,,所以不符合題意.

時,,此時函數(shù)的極值點都為正數(shù)

┅┅┅┅┅┅┅10分

有極大值,極小值,所以

,

又因為,

所以

=,┅┅┅┅┅┅┅12分

,則,所以單調(diào)遞增,所以,即極值之和小于. ┅┅┅┅┅┅┅14分

 

 

 

 

 

 


同步練習冊答案