③若, ④若. 查看更多

 

題目列表(包括答案和解析)

若二次函數(shù)滿足,w.w.w.k.s.5.u.c.o.m       

(1)求的解析式; (2) 若在區(qū)間[-1,1]上,不等式>2x+m恒成立,求實(shí)數(shù)m的取值范圍。

查看答案和解析>>

若實(shí)數(shù)x、y、m滿足|x-m|<|y-m|,則稱x比y接近m。
 (I)若x2-1比3接近0,求x的取值范圍;
 (Ⅱ)對(duì)任意兩個(gè)不相等的正數(shù)a、b,證明:a2b+ab2比a3+b3接近2ab;
 (Ⅲ)已知函數(shù)f(x)的定義域D={x|x≠kπ,k∈Z,x∈R}。任取x∈D,f(x)等于1+sinx和1-sinx中接近0的那個(gè)值。寫出函數(shù)f(x)的解析式,并指出它的奇偶性、最小正周期、最小值和單調(diào)性(結(jié)論不要求證明)。

查看答案和解析>>

若等差數(shù)列的前項(xiàng)和公式為,

=_______,首項(xiàng)=_______;公差=_______。

查看答案和解析>>

若方程有實(shí)根,則實(shí)數(shù)_______;且實(shí)數(shù)_______。

查看答案和解析>>

f ( x ) = a x 2 + b x + c,( ab,c∈R )在區(qū)間[ 0,1 ]上恒有| f ( x ) | ≤ 1。

(1)對(duì)所有這樣的f ( x ),求 | a | + | b | + | c | 的最大值;

(2)試給出一個(gè)這樣的f ( x ),使 | a | + | b | + | c | 確實(shí)取到上述最大值。

查看答案和解析>>

一、選擇題:本大題共12小題,每小題5分,共60分。

1―5 DABBA    6―10 DDCCB    11―12 AC

二、填空題:本大題共4小題,每小題5分,共20分。

13.    14.    15.    16.②④

三、解答題:本大題共6小題,滿分70分。

17.(本小題滿分10分)

   (I)解:

時(shí),

   ………………2分

   ………………4分

, 

  ………………5分

   (II)解:

18.(本小題滿分12分)

   (I)解:

   (II)解:

由(I)知:

   (III)解:

<fieldset id="ydbml"></fieldset>

          19.(本小題滿分12分)

          解法一:

             (I)證明

          如圖,連結(jié)AC,AC交BD于點(diǎn)G,連結(jié)EG。

          ∵ 底面ABCD是正方形,

          ∴ G為AC的中點(diǎn).

          又E為PC的中點(diǎn),

          ∴EG//PA。

          ∵EG平面EDB,PA平面EDB,

          ∴PA//平面EDB   ………………4分

             (II)證明:

          ∵ PD⊥底面ABCD,∴PD⊥BC,PD⊥DC,PD⊥DB

          又∵BC⊥DC,PD∩DC=D,

          ∴BC⊥平面PDC。

          ∴PC是PB在平面PDC內(nèi)的射影。

          ∵PD⊥DC,PD=DC,點(diǎn)E是PC的中點(diǎn),

          ∴DE⊥PC。

          由三垂線定理知,DE⊥PB。

          ∵DE⊥PB,EF⊥PB,DE∩EF=E,

          ∴PB⊥平面EFD。   …………………………8分

             (III)解:

          ∵PB⊥平面EFD,

          ∴PB⊥FD。

          又∵EF⊥PB,F(xiàn)D∩EF=F,

          ∴∠EFD就是二面角C―PB―D的平面角。………………10分

          ∵PD=DC=BC=2,

          ∴PC=DB=

          ∵PD⊥DB,

          由(II)知:DE⊥PC,DE⊥PB,PC∩PB=P,

          ∴DE⊥平面PBC。

          ∵EF平面PBC,

          ∴DE⊥EF。

          ∴∠EFD=60°。

          故所求二面角C―PB―D的大小為60°。  ………………12分

          解法二:

          如圖,以點(diǎn)D為坐標(biāo)原點(diǎn),DA、DC、DP所在直線分別為x軸、y軸、z軸,

          建立空間直角坐標(biāo)系,得以下各點(diǎn)坐標(biāo):D(0,0,0),A(2,0,0),B(2,2,0),

          C(0,2,0),P(0,0,2)   ………………1分

             (I)證明:

          連結(jié)AC,AC交BD于點(diǎn)G,連結(jié)EG。

          ∵ 底面ABCD是正方形,

          ∴ G為AC的中點(diǎn).G點(diǎn)坐標(biāo)為(1,1,0)。

            <menuitem id="ydbml"><i id="ydbml"></i></menuitem>
              <tt id="ydbml"></tt>

              高考資源網(wǎng)www.ks5u.com

              ∴PA//平面EDB   ………………4分

                 (II)證明:

                 (III)解:

              ∵PB⊥平面EFD,

              ∴PB⊥FD。

              又∵EF⊥PB,F(xiàn)D∩EF=F,

              ∴∠EFD就是二面角C―PB―D的平面角!10分

              ∴∠EFD=60°。

              故所求二面角C―PB―D的大小為60°。  ………………12分

              20.(本小題滿分12分)

                 (I)解:

              設(shè) “從甲盒內(nèi)取出的2個(gè)球均為黑球”為事件,“從乙盒內(nèi)取出的2個(gè)球均為黑球”為事件.由于事件相互獨(dú)立,所以取出的4個(gè)球均為黑球的概率為

                 ………………2分

              依題設(shè),

              故乙盒內(nèi)紅球的個(gè)數(shù)為2。  ……………………5分

              (II)解: 由(I)知

              ξ的分布列為

              ξ

              0

              1

              2

              3

              P

                                                                   ………………10分

               ………………12分

              21.(本小題滿分12分)

                 (I)解:由題意設(shè)雙曲線S的方程為   ………………2分

              c為它的半焦距,

                 (II)解:

              22.(本小題滿分12分)

                 (I)解:

                

                 (III)解:

                 (III)解:

               

               

              w.w.w.k.s.5.u.c.o.m

              www.ks5u.com


              同步練習(xí)冊(cè)答案