(I)當取得極小值時.求實數(shù)x的值, 查看更多

 

題目列表(包括答案和解析)

(本小題滿分14分)已知函數(shù) (I)求曲線處的切線方程;   (Ⅱ)求證函數(shù)在區(qū)間[0,1]上存在唯一的極值點,并用二分法求函數(shù)取得極值時相應x的近似值(誤差不超過0.2);(參考數(shù)據(jù)e≈2.7,≈1.6,e0.3≈1.3)

   (III)當試求實數(shù)的取值范圍。

查看答案和解析>>

已知函數(shù)f(x)=數(shù)學公式(a<0).
(I)當a=-4時,試判斷函數(shù)f(x)在(-4,+∞)上的單調(diào)性;
(II)若函數(shù)f(x)在x=t處取到極小值,
(i)求實數(shù)t的取值集合T;
(ii)問是否存在整數(shù)m,使得m≤數(shù)學公式f(t)≤m+1對于任意t∈T恒成立.若存在,求出整數(shù)m的值;若不存在,請說明理由.

查看答案和解析>>

已知函數(shù)f(x)=(a<0).
(I)當a=-4時,試判斷函數(shù)f(x)在(-4,+∞)上的單調(diào)性;
(II)若函數(shù)f(x)在x=t處取到極小值,
(i)求實數(shù)t的取值集合T; 
(ii)問是否存在整數(shù)m,使得m≤f(t)≤m+1對于任意t∈T恒成立.若存在,求出整數(shù)m的值;若不存在,請說明理由.

查看答案和解析>>

(本小題滿分14分)已知函數(shù) (I)求曲線處的切線方程;  (Ⅱ)求證函數(shù)在區(qū)間[0,1]上存在唯一的極值點,并用二分法求函數(shù)取得極值時相應x的近似值(誤差不超過0.2);(參考數(shù)據(jù)e≈2.7,≈1.6,e0.3≈1.3)
(III)當試求實數(shù)的取值范圍。

查看答案和解析>>

已知實數(shù)a是常數(shù),f(x)=x3+ax2-3x+7.
(I )當x∈[2,+∞)時,f(x)的圖象的切線的斜率不小于0,求a的取值范圍;
(II)如果當x=3時,f(x)取得極值,當.x∈[1,4]時,證明:|f(x)|≤11.

查看答案和解析>>

一、選擇題:本大題共12小題,每小題5分,共60分。

1―5 DABBA    6―10 DDCCB    11―12 AC

二、填空題:本大題共4小題,每小題5分,共20分。

13.    14.    15.    16.②④

三、解答題:本大題共6小題,滿分70分。

17.(本小題滿分10分)

   (I)解:

時,

   ………………2分

   ………………4分

, 

  ………………5分

   (II)解:

18.(本小題滿分12分)

   (I)解:

   (II)解:

由(I)知:

   (III)解:

<center id="l49rg"></center>
<center id="l49rg"><em id="l49rg"></em></center>

19.(本小題滿分12分)

解法一:

   (I)證明

如圖,連結(jié)AC,AC交BD于點G,連結(jié)EG。

∵ 底面ABCD是正方形,

∴ G為AC的中點.

又E為PC的中點,

∴EG//PA。

∵EG平面EDB,PA平面EDB,

∴PA//平面EDB   ………………4分

   (II)證明:

∵ PD⊥底面ABCD,∴PD⊥BC,PD⊥DC,PD⊥DB

又∵BC⊥DC,PD∩DC=D,

∴BC⊥平面PDC。

∴PC是PB在平面PDC內(nèi)的射影。

∵PD⊥DC,PD=DC,點E是PC的中點,

∴DE⊥PC。

由三垂線定理知,DE⊥PB。

∵DE⊥PB,EF⊥PB,DE∩EF=E,

∴PB⊥平面EFD。   …………………………8分

   (III)解:

∵PB⊥平面EFD,

∴PB⊥FD。

又∵EF⊥PB,F(xiàn)D∩EF=F,

∴∠EFD就是二面角C―PB―D的平面角!10分

∵PD=DC=BC=2,

∴PC=DB=

∵PD⊥DB,

由(II)知:DE⊥PC,DE⊥PB,PC∩PB=P,

∴DE⊥平面PBC。

∵EF平面PBC,

∴DE⊥EF。

∴∠EFD=60°。

故所求二面角C―PB―D的大小為60°。  ………………12分

解法二:

如圖,以點D為坐標原點,DA、DC、DP所在直線分別為x軸、y軸、z軸,

建立空間直角坐標系,得以下各點坐標:D(0,0,0),A(2,0,0),B(2,2,0),

C(0,2,0),P(0,0,2)   ………………1分

   (I)證明:

連結(jié)AC,AC交BD于點G,連結(jié)EG。

∵ 底面ABCD是正方形,

∴ G為AC的中點.G點坐標為(1,1,0)。

    • 高考資源網(wǎng)www.ks5u.com

      ∴PA//平面EDB   ………………4分

         (II)證明:

         (III)解:

      ∵PB⊥平面EFD,

      ∴PB⊥FD。

      又∵EF⊥PB,F(xiàn)D∩EF=F,

      ∴∠EFD就是二面角C―PB―D的平面角!10分

      ∴∠EFD=60°。

      故所求二面角C―PB―D的大小為60°。  ………………12分

      20.(本小題滿分12分)

         (I)解:

      設 “從甲盒內(nèi)取出的2個球均為黑球”為事件,“從乙盒內(nèi)取出的2個球均為黑球”為事件.由于事件相互獨立,所以取出的4個球均為黑球的概率為

         ………………2分

      依題設,

      故乙盒內(nèi)紅球的個數(shù)為2。  ……………………5分

      (II)解: 由(I)知

      ξ的分布列為

      ξ

      0

      1

      2

      3

      P

                                                           ………………10分

       ………………12分

      21.(本小題滿分12分)

         (I)解:由題意設雙曲線S的方程為   ………………2分

      c為它的半焦距,

         (II)解:

      22.(本小題滿分12分)

         (I)解:

        

         (III)解:

         (III)解:

       

       

      w.w.w.k.s.5.u.c.o.m

      www.ks5u.com


      同步練習冊答案
      <form id="l49rg"></form>