當(dāng)時(shí).由.即.得-----5分 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)

(1)試求的值域;

(2)設(shè),若對(duì), ,恒 成立,試求實(shí)數(shù)的取值范圍

【解析】第一問利用

第二問中若,則,即當(dāng)時(shí),,又由(Ⅰ)知

若對(duì),恒有成立,即轉(zhuǎn)化得到。

解:(1)函數(shù)可化為,  ……5分

 (2) 若,則,即當(dāng)時(shí),,又由(Ⅰ)知.        …………8分

若對(duì),,恒有成立,即,

,即的取值范圍是

 

查看答案和解析>>

在某校組織的一次籃球定點(diǎn)投籃測(cè)試中,規(guī)定每人最多投3次.每次投籃的結(jié)果相互獨(dú)立.在A處每投進(jìn)一球得3分,在B處每投進(jìn)一球得2分,否則得0分.將學(xué)生得分逐次累加并用ξ表示,如果ξ的值不低于3分就認(rèn)為通過測(cè)試,立即停止投籃,否則繼續(xù)投籃,直到投完三次為止.投籃的方案有以下兩種:方案1:先在A處投一球,以后都在B處投:方案2:都在B處投籃.甲同學(xué)在A處投籃的命中率為0.5,在B處投籃的命中率為0.8.
(1)當(dāng)甲同學(xué)選擇方案1時(shí).
①求甲同學(xué)測(cè)試結(jié)束后所得總分等于4的概率:
②求甲同學(xué)測(cè)試結(jié)束后所得總分ξ的分布列和數(shù)學(xué)期望Eξ;
(2)你認(rèn)為甲同學(xué)選擇哪種方案通過測(cè)試的可能性更大?說(shuō)明理由.

查看答案和解析>>

在某校組織的一次籃球定點(diǎn)投籃測(cè)試中,規(guī)定每人最多投3次.每次投籃的結(jié)果相互獨(dú)立.在A處每投進(jìn)一球得3分,在B處每投進(jìn)一球得2分,否則得0分.將學(xué)生得分逐次累加并用ξ表示,如果ξ的值不低于3分就認(rèn)為通過測(cè)試,立即停止投籃,否則繼續(xù)投籃,直到投完三次為止.投籃的方案有以下兩種:方案1:先在A處投一球,以后都在B處投:方案2:都在B處投籃.甲同學(xué)在A處投籃的命中率為0.5,在B處投籃的命中率為0.8.
(1)當(dāng)甲同學(xué)選擇方案1時(shí).
①求甲同學(xué)測(cè)試結(jié)束后所得總分等于4的概率:
②求甲同學(xué)測(cè)試結(jié)束后所得總分ξ的分布列和數(shù)學(xué)期望Eξ;
(2)你認(rèn)為甲同學(xué)選擇哪種方案通過測(cè)試的可能性更大?說(shuō)明理由.

查看答案和解析>>

(2013•南開區(qū)二模)在某校組織的一次籃球定點(diǎn)投籃測(cè)試中,規(guī)定每人最多投3次.每次投籃的結(jié)果相互獨(dú)立.在A處每投進(jìn)一球得3分,在B處每投進(jìn)一球得2分,否則得0分.將學(xué)生得分逐次累加并用ξ表示,如果ξ的值不低于3分就認(rèn)為通過測(cè)試,立即停止投籃,否則繼續(xù)投籃,直到投完三次為止.投籃的方案有以下兩種:方案1:先在A處投一球,以后都在B處投:方案2:都在B處投籃.甲同學(xué)在A處投籃的命中率為0.5,在B處投籃的命中率為0.8.
(1)當(dāng)甲同學(xué)選擇方案1時(shí).
①求甲同學(xué)測(cè)試結(jié)束后所得總分等于4的概率:
②求甲同學(xué)測(cè)試結(jié)束后所得總分ξ的分布列和數(shù)學(xué)期望Eξ;
(2)你認(rèn)為甲同學(xué)選擇哪種方案通過測(cè)試的可能性更大?說(shuō)明理由.

查看答案和解析>>

某廠生產(chǎn)一種機(jī)器的固定成本為0.5萬(wàn)元,但每生產(chǎn)1百臺(tái),需增加投入 0.25萬(wàn)元.市場(chǎng)對(duì)此產(chǎn)品的年需求量為5百臺(tái)(即產(chǎn)量多于5百臺(tái)時(shí),由于市場(chǎng)需求只能售出5百臺(tái),但一直要照常增加投入成本).則當(dāng)售出x百臺(tái)時(shí),收入(萬(wàn)元)為x的函數(shù):R(x)=5x-
x22
,0≤x≤5.請(qǐng)解答:
(1)分別寫出成本函數(shù)C(x);
(2)把利潤(rùn)表示為年產(chǎn)量的和函數(shù)L(x);
(3)年產(chǎn)量是多少時(shí),工廠所得利潤(rùn)最大?

查看答案和解析>>


同步練習(xí)冊(cè)答案