即對任意n∈N*都成立. 查看更多

 

題目列表(包括答案和解析)

若數(shù)列{an}滿足an+2+pan+1+qan=0(其中p2+q2≠0,且p、q為常數(shù))對任意n∈N*都成立,則我們把數(shù)列{an}稱為“L型數(shù)列”.
(1)試問等差數(shù)列{an}、等比數(shù)列{bn}(公比為r)是否為L型數(shù)列?若是,寫出對應(yīng)p、q的值;若不是,說明理由.
(2)已知L型數(shù)列{an}滿足an+1+pan+qan-1=0(n≥2,n∈N*,p2-4q>0,q≠0),x1、x2是方程x2+px+q=0的兩根,若b-axi≠0(i=1,2),求證:數(shù)列{an+1-xian}(i=1,2,n∈N*)是等比數(shù)列(只選其中之一加以證明即可).
(3)請你提出一個關(guān)于L型數(shù)列的問題,并加以解決.(本小題將根據(jù)所提問題的普適性給予不同的分值,最高10分)

查看答案和解析>>

 已知命題及其證明:

(1)當(dāng)時,左邊=1,右邊=所以等式成立;

(2)假設(shè)時等式成立,即成立,

則當(dāng)時,,所以時等式也成立。

由(1)(2)知,對任意的正整數(shù)n等式都成立。      

經(jīng)判斷以上評述

A.命題、推理都正確      B命題不正確、推理正確 

C.命題正確、推理不正確      D命題、推理都不正確

 

查看答案和解析>>

(2009•黃浦區(qū)二模)若數(shù)列{an}滿足an+2+pan+1+qan=0(其中p2+q2≠0,且p、q為常數(shù))對任意n∈N*都成立,則我們把數(shù)列{an}稱為“L型數(shù)列”.
(1)試問等差數(shù)列{an}、等比數(shù)列{bn}(公比為r)是否為L型數(shù)列?若是,寫出對應(yīng)p、q的值;若不是,說明理由.
(2)已知L型數(shù)列{an}滿足an+1+pan+qan-1=0(n≥2,n∈N*,p2-4q>0,q≠0),x1、x2是方程x2+px+q=0的兩根,若b-axi≠0(i=1,2),求證:數(shù)列{an+1-xian}(i=1,2,n∈N*)是等比數(shù)列(只選其中之一加以證明即可).
(3)請你提出一個關(guān)于L型數(shù)列的問題,并加以解決.(本小題將根據(jù)所提問題的普適性給予不同的分值,最高10分)

查看答案和解析>>

已知命題1+2+22+…+2n-1=2n-1及其證明:
(1)當(dāng)n=1時,左邊=1,右邊=21-1=1,所以等式成立;
(2)假設(shè)n=k時等式成立,即1+2+22+…+2k-1=2k-1 成立,
則當(dāng)n=k+1時,1+2+22+…+2k-1+2k==2k+1-1,所以n=k+1時等式也成立,
由(1)(2)知,對任意的正整數(shù)n等式都成立,
判斷以上評述

[     ]

A.命題、推理都正確
B.命題正確、推理不正確
C.命題不正確、推理正確
D.命題、推理都不正確

查看答案和解析>>

集合A1,A2,A3,…,An為集合M={1,2,3,…,n}的n個不同的子集,對于任意不大于n的正整數(shù)i,j滿足下列條件:
①i∉Ai,且每一個Ai至少含有三個元素;
②i∈Aj的充要條件是j∉Aj(其中i≠j).
為了表示這些子集,作n行n列的數(shù)表(即n×n數(shù)表),規(guī)定第i行第j列數(shù)為:aij=
0   當(dāng)i∉AJ
1        當(dāng)i∈AJ時  

(1)該表中每一列至少有多少個1;若集合M={1,2,3,4,5,6,7},請完成下面7×7數(shù)表(填符合題意的一種即可);
(2)用含n的代數(shù)式表示n×n數(shù)表中1的個數(shù)f(n),并證明n≥7;
(3)設(shè)數(shù)列{an}前n項和為f(n),數(shù)列{cn}的通項公式為:cn=5an+1,證明不等式:
5cmn
-
cmcn
>1對任何正整數(shù)m,n都成立.(第1小題用表)
1 2 3 4 5 6 7
1 0
2 0
3 0
4 0
5 0
6 0
7 0

查看答案和解析>>


同步練習(xí)冊答案