題目列表(包括答案和解析)
x2 |
a2 |
y2 |
b2 |
| ||
2 |
2 |
如圖,已知橢圓=1(a>b>0)的離心率為,以該橢圓上的點和橢圓的左、右焦點F1、F2為頂點的三角形的周長為4(+1),一等軸雙曲線的頂點是該橢圓的焦點,設P為該雙曲線上異于頂點的任一點,直線PF1和PF2與橢圓的交點分別為A、B和C、D.
(1)求橢圓和雙曲線的標準方程;
(2)設直線PF1、PF2的斜率分別為k1、k2,證明:k1·k2=1;
(3)是否存在常數(shù)λ,使得|AB|+|CD|=λ|AB|·|CD|恒成立?若存在,求λ的值;若不存在,請說明理由.
如圖,已知橢圓的離心率為,以該橢圓上的點和橢圓的左右焦點F1、F2為頂點的三角形的周長為。一等軸雙曲線的頂點是該橢圓的焦點,設P為該雙曲線上異于頂點的任一點,直線PF1和PF2與橢圓的焦點分別為A、B和C、D。
(Ⅰ)求橢圓和雙曲線的標準方程
(Ⅱ)設直線PF1、PF2的斜率分別為k1、k2,證明:k1·k2=1
(Ⅲ)是否存在常數(shù),使得|AB|+|CD|=|AB|·|CD|恒成立?若存在,求的值,若不存在,請說明理由。
如圖,已知橢圓的離心率為,以該橢圓上的點和橢圓的左右焦點F1、F2為頂點的三角形的周長為。一等軸雙曲線的頂點是該橢圓的焦點,設P為該雙曲線上異于頂點的任一點,直線PF1和PF2與橢圓的焦點分別為A、B和C、D。
(1)求橢圓和雙曲線的標準方程
(2)設直線PF1、PF2的斜率分別為k1、k2,證明:k1·k2=1
(3)是否存在常數(shù),使得|AB|+|CD|=|AB|·|CD|恒成立?
若存在,求的值,若不存在,請說明理由。
如圖,已知橢圓的離心率為,以該橢圓上的點和橢圓的左、右焦點為頂點的三角形的周長為.一等軸雙曲線的頂點是該橢圓的焦點,設為該雙曲線上異于頂點的任一點,直線和與橢圓的交點分別為和.
(Ⅰ)求橢圓和雙曲線的標準方程;
(Ⅱ)設直線、的斜率分別為、,證明;
(Ⅲ)是否存在常數(shù),使得恒成立?若存在,求的值;若不存在,請說明理由.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com