[例題5]如圖2-5所示.一輛汽車A拉著裝有集裝箱的拖車B.以速度進入向下傾斜的直車道.車道每100m下降2m.為使汽車速度在s=200m的距離內(nèi)減到v2=10m/s.駕駛員必須剎車.假定剎車時地面的摩擦阻力是恒力.且該力的70%作用于拖車B.30%作用于汽車A.已知A的質(zhì)量m1=2000kg.B的質(zhì)量m2=6000kg.求汽車與拖車的連接處沿運動方向的相互作用力.取重力加速度g=10m/s2. 查看更多

 

題目列表(包括答案和解析)

如圖1所示,兩根足夠長、電阻不計的平行光滑金屬導(dǎo)軌相距為L1=1m,導(dǎo)軌平面與水平面成θ=30°角,上端連接阻值R=1.5Ω的電阻;質(zhì)量為m=0.2kg、阻值r=0.5Ω的金屬棒ab放在兩導(dǎo)軌上,距離導(dǎo)軌最上端為L2=4m,棒與導(dǎo)軌垂直并保持良好接觸.整個裝置處于一勻強磁場中,該勻強磁場方向與導(dǎo)軌平面垂直,磁感應(yīng)強度大小隨時間變化的情況如圖2甲所示.一開始為保持ab棒靜止,在棒上施加了一平行于導(dǎo)軌平面的外力F,已知當(dāng)t=2s時,F(xiàn)恰好為零.求:
(1)當(dāng)t=2s時,磁感應(yīng)強度B的大;
(2)當(dāng)t=3s時,外力F的大小和方向;
(3)當(dāng)t=4s時,突然撤去外力F,當(dāng)金屬棒下滑速度達到穩(wěn)定時,導(dǎo)體棒ab兩端的電壓為多大;
(4)請在圖2乙中畫出前4s外力F隨時間的變化情況.精英家教網(wǎng)

查看答案和解析>>

(1)利用多用電表測電壓、電阻,若選擇開關(guān)處在“直流電壓2.5V”擋時指針位于圖1示位置,則被測電壓是
 
V;若選擇開關(guān)處在“×10”歐姆擋時指針位于圖示位置,則被測電阻是
 
Ω.
(2)如圖2甲所示為一黑箱裝置,內(nèi)有電源(一節(jié)干電池)、電阻等元件,a、b為黑箱的兩個輸出端.某同學(xué)設(shè)計了如圖乙所示的電路探測黑箱,調(diào)節(jié)變阻器的阻值,記錄下電壓表和電流表的示數(shù),并根據(jù)實驗數(shù)據(jù)在方格紙上畫出了U-I圖線,如圖丙所示.當(dāng)變阻器阻值調(diào)到6.5Ω時,該黑箱a、b兩端的輸出功率為
 
W;該黑箱a、b兩端的最大輸出功率為
 
W.(結(jié)果均保留到小數(shù)點后兩位)
精英家教網(wǎng)

查看答案和解析>>

如圖1所示,兩根足夠長、電阻不計的平行光滑金屬導(dǎo)軌相距為L1=1m,導(dǎo)軌平面與水平面成θ=30°角,上端連接阻值R=1.5Ω的電阻;質(zhì)量為m=0.2kg、阻值r=0.5Ω的金屬棒ab放在兩導(dǎo)軌上,距離導(dǎo)軌最上端為L2=4m,棒與導(dǎo)軌垂直并保持良好接觸.整個裝置處于一勻強磁場中,該勻強磁場方向與導(dǎo)軌平面垂直,磁感應(yīng)強度大小隨時間變化的情況如圖2甲所示.一開始為保持ab棒靜止,在棒上施加了一平行于導(dǎo)軌平面的外力F,已知當(dāng)t=2s時,F(xiàn)恰好為零.求:
(1)當(dāng)t=2s時,磁感應(yīng)強度B的大。
(2)當(dāng)t=3s時,外力F的大小和方向;
(3)當(dāng)t=4s時,突然撤去外力F,當(dāng)金屬棒下滑速度達到穩(wěn)定時,導(dǎo)體棒ab兩端的電壓為多大;
(4)請在圖2乙中畫出前4s外力F隨時間的變化情況.

查看答案和解析>>

如圖1所示,兩根足夠長、電阻不計的平行光滑金屬導(dǎo)軌相距為L1=1m,導(dǎo)軌平面與水平面成θ=30°角,上端連接阻值R=1.5Ω的電阻;質(zhì)量為m=0.2kg、阻值r=0.5Ω的金屬棒ab放在兩導(dǎo)軌上,距離導(dǎo)軌最上端為L2=4m,棒與導(dǎo)軌垂直并保持良好接觸.整個裝置處于一勻強磁場中,該勻強磁場方向與導(dǎo)軌平面垂直,磁感應(yīng)強度大小隨時間變化的情況如圖2甲所示.一開始為保持ab棒靜止,在棒上施加了一平行于導(dǎo)軌平面的外力F,已知當(dāng)t=2s時,F(xiàn)恰好為零.求:
(1)當(dāng)t=2s時,磁感應(yīng)強度B的大小;
(2)當(dāng)t=3s時,外力F的大小和方向;
(3)當(dāng)t=4s時,突然撤去外力F,當(dāng)金屬棒下滑速度達到穩(wěn)定時,導(dǎo)體棒ab兩端的電壓為多大;
(4)請在圖2乙中畫出前4s外力F隨時間的變化情況.
精英家教網(wǎng)

查看答案和解析>>

如圖1所示,兩根足夠長、電阻不計的平行光滑金屬導(dǎo)軌相距為L1=1m,導(dǎo)軌平面與水平面成θ=30°角,上端連接阻值R=1.5Ω的電阻;質(zhì)量為m=0.2kg、阻值r=0.5Ω的金屬棒ab放在兩導(dǎo)軌上,距離導(dǎo)軌最上端為L2=4m,棒與導(dǎo)軌垂直并保持良好接觸.整個裝置處于一勻強磁場中,該勻強磁場方向與導(dǎo)軌平面垂直,磁感應(yīng)強度大小隨時間變化的情況如圖2甲所示.一開始為保持ab棒靜止,在棒上施加了一平行于導(dǎo)軌平面的外力F,已知當(dāng)t=2s時,F(xiàn)恰好為零.求:
(1)當(dāng)t=2s時,磁感應(yīng)強度B的大小;
(2)當(dāng)t=3s時,外力F的大小和方向;
(3)當(dāng)t=4s時,突然撤去外力F,當(dāng)金屬棒下滑速度達到穩(wěn)定時,導(dǎo)體棒ab兩端的電壓為多大;
(4)請在圖2乙中畫出前4s外力F隨時間的變化情況.

查看答案和解析>>

一、選擇題

1、B    2、C  3、AC    4、D    5、BC  6BC  

7、A  解析:由題意知,地面對物塊A的摩擦力為0,對物塊B的摩擦力為。

對A、B整體,設(shè)共同運動的加速度為a,由牛頓第二定律有:

對B物體,設(shè)A對B的作用力為,同理有

聯(lián)立以上三式得:

 8、B    9、A       10、B

二、實驗題

11、⑴ 不變    ⑵ AD  ⑶ABC  ⑷某學(xué)生的質(zhì)量

三、計算題

12、解析:由牛頓第二定律得:mg-f=ma

                         

    拋物后減速下降有:

                          Δv=a/Δt

                    解得:

 

13、解析:人相對木板奔跑時,設(shè)人的質(zhì)量為,加速度為,木板的質(zhì)量為M,加速度大小為,人與木板間的摩擦力為,根據(jù)牛頓第二定律,對人有:

(2)設(shè)人從木板左端開始距到右端的時間為,對木板受力分析可知:,方向向左;

由幾何關(guān)系得:,代入數(shù)據(jù)得:

(3)當(dāng)人奔跑至右端時,人的速度,木板的速度;人抱住木柱的過程中,系統(tǒng)所受的合外力遠小于相互作用的內(nèi)力,滿足動量守恒條件,有:

。ㄆ渲為二者共同速度)

代入數(shù)據(jù)得,方向與人原來運動方向一致;

以后二者以為初速度向右作減速滑動,其加速度大小為,故木板滑行的距離為。

  

14. 解析:(1)從圖中可以看出,在t=2s內(nèi)運動員做勻加速直線運動,其加速度大小為

 =8m/s2

設(shè)此過程中運動員受到的阻力大小為f,根據(jù)牛頓第二定律,有mg-f=ma

得           f=m(g-a)=80×(10-8)N=160N

(2)從圖中估算得出運動員在14s內(nèi)下落了

                     39.5×2×2m158 m

根據(jù)動能定理,有

所以有    =(80×10×158-×80×62)J≈1.25×105J

(3)14s后運動員做勻速運動的時間為

              s=57s

運動員從飛機上跳下到著地需要的總時間

        t=t+t′=(14+57)s=71s

15. 13、解析:(1)取豎直向下的方向為正方向。

   球與管第一次碰地前瞬間速度,方向向下。

   碰地的瞬間管的速度,方向向上;球的速度,方向向下,

   球相對于管的速度,方向向下。

   碰后,管受重力及向下的摩擦力,加速度a=2g,方向向下,

   球受重力及向上的摩擦力,加速度a=3g,方向向上,

球相對管的加速度a=5g,方向向上。

取管為參照物,則球與管相對靜止前,球相對管下滑的距離為:

要滿足球不滑出圓管,則有。

(2)設(shè)管從碰地到它彈到最高點所需時間為t1(設(shè)球與管在這段時間內(nèi)摩擦力方向不變),則:

設(shè)管從碰地到與球相對靜止所需時間為t2,

因為t1 >t2,說明球與管先達到相對靜止,再以共同速度上升至最高點,設(shè)球與管達到相對靜止時離地高度為h’,兩者共同速度為v’,分別為:

然后球與管再以共同速度v’作豎直上拋運動,再上升高度h’’為

因此,管上升最大高度H’=h’+h’’=

(3)當(dāng)球與管第二次共同下落時,離地高為,球位于距管頂處,同題(1)可解得在第二次反彈中發(fā)生的相對位移。

 

16. 解析:(1)小球最后靜止在水平地面上,在整個運動過程中,空氣阻力做功使其機械能減少,設(shè)小球從開始拋出到最后靜止所通過的路程S,有 fs=mv02/2       已知 f =0.6mg    代入算得: s=  5 v02/(6g)                

    (2)第一次上升和下降:設(shè)上升的加速度為a11.上升所用的時間為t11,上升的最大高度為h1;下降的加速度為a12,下降所用時間為t12

    上升階段:F=mg+f =1.6 mg

    由牛頓第二定律:a11 =1.6g           

    根據(jù):vt=v0-a11t11,  vt=0

    得:v0=l.6gt11, 所以t11= 5 v0/(8g)              

    下降階段:a12=(mg-f)/m= 0.4g          

    由h1= a11t112/2  和 h2= a12t122/2      得:t12=2t11=5 v0/(4g)          

    所以上升和下降所用的總時間為:T1=t11+t12=3t11=  15 v0/(8g)        

    第二次上升和下降,以后每次上升的加速度都為a11,下降的加速度都為a12;設(shè)上升的初速度為v2,上升的最大高度為h2,上升所用時間為t21,下降所用時間為t22

    由v22=2a12h1  和v02=2a11h1          得  v2= v0/2           

    上升階段:v2=a11t21     得:t21= v2/ a11=  5 v0/(16g)       

    下降階段:  由  h2= a11t212/2   和h2= a12t222/2        得t22=2t21       

 所以第二次上升和下降所用總時間為:T2=t21+t22=3t21=15 v0/(16g)= T1/2    

    第三次上升和下降,設(shè)上升的初速度為v3,上升的最大高度為h3,上升所用時間為t31,下降所用時間為t32

    由 v32=2a11h   和v22=2a12h         得:  v3= v2/2  = v0/4

    上升階段:v3=a11t3l,得t31= 5 v0/(32g)    

    下降階段:由 h3= a11t312/2       和h3= a12t322/2            得:t32=2t31    

    所以第三次上升和下降所用的總時間為:T3=t31+t32=3t31=15 v0/(32g)= T1/4       

    同理,第n次上升和下降所用的總時間為: Tn        

    所以,從拋出到落地所用總時間為: T=15 v0/(4g)

 


同步練習(xí)冊答案