?????????????? 反思:許多臨界問(wèn)題.題干中常用“恰好 .“最大 .“至少 .“不相撞 .“不脫離 --等詞語(yǔ)對(duì)臨界狀態(tài)給出了明確的暗示.審題時(shí).一定要抓住這些特定的詞語(yǔ)發(fā)掘其內(nèi)含規(guī)律.找出臨界條件.有時(shí).有些臨界問(wèn)題中并不顯含上述常見(jiàn)的“臨界術(shù)語(yǔ) .但審題時(shí)發(fā)現(xiàn)某個(gè)物理量在變化過(guò)程中會(huì)發(fā)生突變.則該物理量突變時(shí)物體所處的狀態(tài)即為臨界狀態(tài).臨界問(wèn)題通常具有一定的隱蔽性.解題靈活性較大.審題時(shí)應(yīng)力圖還原習(xí)題的物理情景.抓住臨界狀態(tài)的特征.找到正確的解題方向. 查看更多

 

題目列表(包括答案和解析)

(1)2011年3月11日,日本東海岸發(fā)生9.0級(jí)地震,地震引發(fā)的海嘯摧毀了日本福島第一核電站的冷卻系統(tǒng),最終導(dǎo)致福島第一核電站的6座核反應(yīng)堆不同程度損壞,向空氣中泄漏大量碘131和銫137等放射性物質(zhì),這些放射性物質(zhì)隨大氣環(huán)流飄散到許多國(guó)家.4月4日,日本開(kāi)始向太平洋排放大量帶有放射性物質(zhì)的廢水,引起周邊國(guó)家的指責(zé).下列說(shuō)法中正確的是:
C
C

A.福島第一核電站是利用原子核衰變時(shí)釋放的核能來(lái)發(fā)電
B.碘131能自發(fā)進(jìn)行β衰變,衰變后生成的新物質(zhì)原子核比碘131原子核多一個(gè)中子而少一個(gè)質(zhì)子
C.銫137進(jìn)行β衰變時(shí),往往同時(shí)釋放出γ射線,γ射線具有很強(qiáng)的穿透能力,甚至能穿透幾厘米厚的鉛板
D.銫137進(jìn)入人體后主要損害人的造血系統(tǒng)和神經(jīng)系統(tǒng),其半衰期是30.17年,如果將銫137的溫度降低到0度以下,可以延緩其衰變速度.
(2)如圖所示,質(zhì)量為m1=3kg的1/2光滑圓弧形軌道ABC與一質(zhì)量為m2=1kg 的物塊P緊靠著(不粘連)靜置于光滑水平面上,B為半圓軌道的最低點(diǎn),AC為軌道的水平直徑,軌道半徑R=0.3m.一質(zhì)量為m3=2kg的小球(可視為質(zhì)點(diǎn))從圓弧軌道的A處由靜止釋放,g取10m/s2,求:
①小球第一次滑到B點(diǎn)時(shí)的速度v1;
②小球第一次經(jīng)過(guò)B點(diǎn)后,相對(duì)B能上升的最大高度h.

查看答案和解析>>

(2007?廣東)土星周?chē)性S多大小不等的巖石顆粒,其繞土星的運(yùn)動(dòng)可視為圓周運(yùn)動(dòng).其中有兩個(gè)巖石顆粒A和B與土星中心距離分別為rA=8.0×104km和rB=1.2×105km.忽略所有巖石顆粒間的相互作用,求:(結(jié)果可用根式表示)
(1)求巖石顆粒A和B的線速度之比;
(2)求巖石顆粒A和B的周期之比;
(3)土星探測(cè)器上有一物體,在地球上重為10N,推算出他在距土星中心3.2×105km處受到土星的引力為0.38N.已知地球半徑為6.4×103km,請(qǐng)估算土星質(zhì)量是地球質(zhì)量的多少倍?

查看答案和解析>>

物理學(xué)的發(fā)展是許多物理學(xué)家?jiàn)^斗的結(jié)果,下面關(guān)于一些物理學(xué)家的貢獻(xiàn)說(shuō)法正確的是( 。

查看答案和解析>>

由于通訊和廣播等方面的需要,許多國(guó)家發(fā)射了地球同步軌道衛(wèi)星,這些同步衛(wèi)星的( 。

查看答案和解析>>

許多科學(xué)家在物理學(xué)發(fā)展過(guò)程中做出了重要貢獻(xiàn),下列表述正確的是( 。

查看答案和解析>>

一、選擇題

1、B    2、C  3、AC    4、D    5、BC  6BC  

7、A  解析:由題意知,地面對(duì)物塊A的摩擦力為0,對(duì)物塊B的摩擦力為。

對(duì)A、B整體,設(shè)共同運(yùn)動(dòng)的加速度為a,由牛頓第二定律有:

對(duì)B物體,設(shè)A對(duì)B的作用力為,同理有

聯(lián)立以上三式得:

 8、B    9、A       10、B

二、實(shí)驗(yàn)題

11、⑴ 不變    ⑵ AD  ⑶ABC  ⑷某學(xué)生的質(zhì)量

三、計(jì)算題

12、解析:由牛頓第二定律得:mg-f=ma

                         

    拋物后減速下降有:

                          Δv=a/Δt

                    解得:

 

13、解析:人相對(duì)木板奔跑時(shí),設(shè)人的質(zhì)量為,加速度為,木板的質(zhì)量為M,加速度大小為,人與木板間的摩擦力為,根據(jù)牛頓第二定律,對(duì)人有:;

(2)設(shè)人從木板左端開(kāi)始距到右端的時(shí)間為,對(duì)木板受力分析可知:,方向向左;

由幾何關(guān)系得:,代入數(shù)據(jù)得:

(3)當(dāng)人奔跑至右端時(shí),人的速度,木板的速度;人抱住木柱的過(guò)程中,系統(tǒng)所受的合外力遠(yuǎn)小于相互作用的內(nèi)力,滿(mǎn)足動(dòng)量守恒條件,有:

。ㄆ渲為二者共同速度)

代入數(shù)據(jù)得,方向與人原來(lái)運(yùn)動(dòng)方向一致;

以后二者以為初速度向右作減速滑動(dòng),其加速度大小為,故木板滑行的距離為。

  

14. 解析:(1)從圖中可以看出,在t=2s內(nèi)運(yùn)動(dòng)員做勻加速直線運(yùn)動(dòng),其加速度大小為

 =8m/s2

設(shè)此過(guò)程中運(yùn)動(dòng)員受到的阻力大小為f,根據(jù)牛頓第二定律,有mg-f=ma

得           f=m(g-a)=80×(10-8)N=160N

(2)從圖中估算得出運(yùn)動(dòng)員在14s內(nèi)下落了

                     39.5×2×2m158 m

根據(jù)動(dòng)能定理,有

所以有    =(80×10×158-×80×62)J≈1.25×105J

(3)14s后運(yùn)動(dòng)員做勻速運(yùn)動(dòng)的時(shí)間為

              s=57s

運(yùn)動(dòng)員從飛機(jī)上跳下到著地需要的總時(shí)間

        t=t+t′=(14+57)s=71s

15. 13、解析:(1)取豎直向下的方向?yàn)檎较颉?/p>

   球與管第一次碰地前瞬間速度,方向向下。

   碰地的瞬間管的速度,方向向上;球的速度,方向向下,

   球相對(duì)于管的速度,方向向下。

   碰后,管受重力及向下的摩擦力,加速度a=2g,方向向下,

   球受重力及向上的摩擦力,加速度a=3g,方向向上,

球相對(duì)管的加速度a=5g,方向向上。

取管為參照物,則球與管相對(duì)靜止前,球相對(duì)管下滑的距離為:

要滿(mǎn)足球不滑出圓管,則有。

(2)設(shè)管從碰地到它彈到最高點(diǎn)所需時(shí)間為t1(設(shè)球與管在這段時(shí)間內(nèi)摩擦力方向不變),則:

設(shè)管從碰地到與球相對(duì)靜止所需時(shí)間為t2,

因?yàn)閠1 >t2,說(shuō)明球與管先達(dá)到相對(duì)靜止,再以共同速度上升至最高點(diǎn),設(shè)球與管達(dá)到相對(duì)靜止時(shí)離地高度為h’,兩者共同速度為v’,分別為:

然后球與管再以共同速度v’作豎直上拋運(yùn)動(dòng),再上升高度h’’為

因此,管上升最大高度H’=h’+h’’=

(3)當(dāng)球與管第二次共同下落時(shí),離地高為,球位于距管頂處,同題(1)可解得在第二次反彈中發(fā)生的相對(duì)位移。

 

16. 解析:(1)小球最后靜止在水平地面上,在整個(gè)運(yùn)動(dòng)過(guò)程中,空氣阻力做功使其機(jī)械能減少,設(shè)小球從開(kāi)始拋出到最后靜止所通過(guò)的路程S,有 fs=mv02/2       已知 f =0.6mg    代入算得: s=  5 v02/(6g)                

    (2)第一次上升和下降:設(shè)上升的加速度為a11.上升所用的時(shí)間為t11,上升的最大高度為h1;下降的加速度為a12,下降所用時(shí)間為t12

    上升階段:F=mg+f =1.6 mg

    由牛頓第二定律:a11 =1.6g           

    根據(jù):vt=v0-a11t11,  vt=0

    得:v0=l.6gt11, 所以t11= 5 v0/(8g)              

    下降階段:a12=(mg-f)/m= 0.4g          

    由h1= a11t112/2  和 h2= a12t122/2      得:t12=2t11=5 v0/(4g)          

    所以上升和下降所用的總時(shí)間為:T1=t11+t12=3t11=  15 v0/(8g)        

    第二次上升和下降,以后每次上升的加速度都為a11,下降的加速度都為a12;設(shè)上升的初速度為v2,上升的最大高度為h2,上升所用時(shí)間為t21,下降所用時(shí)間為t22

    由v22=2a12h1  和v02=2a11h1          得  v2= v0/2           

    上升階段:v2=a11t21     得:t21= v2/ a11=  5 v0/(16g)       

    下降階段:  由  h2= a11t212/2   和h2= a12t222/2        得t22=2t21       

 所以第二次上升和下降所用總時(shí)間為:T2=t21+t22=3t21=15 v0/(16g)= T1/2    

    第三次上升和下降,設(shè)上升的初速度為v3,上升的最大高度為h3,上升所用時(shí)間為t31,下降所用時(shí)間為t32

    由 v32=2a11h   和v22=2a12h         得:  v3= v2/2  = v0/4

    上升階段:v3=a11t3l,得t31= 5 v0/(32g)    

    下降階段:由 h3= a11t312/2       和h3= a12t322/2            得:t32=2t31    

    所以第三次上升和下降所用的總時(shí)間為:T3=t31+t32=3t31=15 v0/(32g)= T1/4       

    同理,第n次上升和下降所用的總時(shí)間為: Tn        

    所以,從拋出到落地所用總時(shí)間為: T=15 v0/(4g)

 


同步練習(xí)冊(cè)答案