已知動點M分別與兩定點A的連線的斜率之積為定值m.若點M的軌跡是焦點在x軸上的橢圓.則m的取值范圍是(-1.0),若點M的軌跡是離心率為2的雙曲線.則m的值為 3 . 查看更多

 

題目列表(包括答案和解析)

已知動點P(x,y)與兩定點M(-1,0),N(1,0)連線的斜率之積等于常數(shù)λ(λ≠0).
(1)求動點P的軌跡C的形狀;
(2)試根據(jù)λ的取值情況討論軌跡C的形狀;
(3)當λ=-2時,過E(1,0)作兩條互相垂直直線l1、l2,且分別與軌跡C交于A、B兩點,探究直線AB是否過定點?若過定點,請求出定點坐標;否則,說明理由.

查看答案和解析>>

已知動點P(x,y)與兩定點M(-1,0),N(1,0)連線的斜率之積等于常數(shù)λ(λ≠0).
(1)求動點P的軌跡C的形狀;
(2)試根據(jù)λ的取值情況討論軌跡C的形狀;
(3)當λ=-2時,過E(1,0)作兩條互相垂直直線l1、l2,且分別與軌跡C交于A、B兩點,探究直線AB是否過定點?若過定點,請求出定點坐標;否則,說明理由.

查看答案和解析>>

已知動點P(x,y)與一定點F(1,0)的距離和它到一定直線l:x=4的距離之比為
(Ⅰ) 求動點P(x,y)的軌跡C的方程;
(Ⅱ)已知直線l':x=my+1交軌跡C于A、B兩點,過點A、B分別作直線l:x=4的垂線,垂足依次為點D、E.連接AE、BD,試探索當m變化時,直線AE、BD是否相交于一定點N?若交于定點N,請求出N點的坐標,并給予證明;否則說明理由.

查看答案和解析>>

已知動點P(x,y)與兩定點M(-1,0),N(1,0)連線的斜率之積等于常數(shù)λ(λ≠0).
(1)求動點P的軌跡C的形狀;
(2)試根據(jù)λ的取值情況討論軌跡C的形狀;
(3)當λ=-2時,過E(1,0)作兩條互相垂直直線l1、l2,且分別與軌跡C交于A、B兩點,探究直線AB是否過定點?若過定點,請求出定點坐標;否則,說明理由.

查看答案和解析>>

已知拋物線C的頂點為坐標原點,橢圓C′的對稱軸是坐標軸,拋物線C在x軸上的焦點恰好是橢圓C′的焦點
(Ⅰ)若拋物線C和橢圓C′都經(jīng)過點M(1,2),求拋物線C和橢圓C′的方程;
(Ⅱ)已知動直線l過點p(3,0),交拋物線C于A,B兩點,直線l′:x=2被以AP為直徑的圓截得的弦長為定值,求拋物線C的方程;
(Ⅲ)在(Ⅱ)的條件下,分別過A,B的拋物線C的兩條切線的交點E的軌跡為D,直線AB與軌跡D交于點F,求|EF|的最小值.

查看答案和解析>>


同步練習(xí)冊答案