由在直線上.得. 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)在直線y=x-2上是否存在點P,使得經(jīng)過點P能作出拋物線y=
12
x2
的兩條互相垂直的切線?若存在,求點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

在直線y=x-2上是否存在點P,使得經(jīng)過點P能作出拋物線的兩條互相垂直的切線?若存在,求點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

在直線y=x-2上是否存在點P,使得經(jīng)過點P能作出拋物線y=
1
2
x2
的兩條互相垂直的切線?若存在,求點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

在直角坐標(biāo)坐標(biāo)系中,已知一個圓心在坐標(biāo)原點,半徑為2的圓,從這個圓上任意一點P向y軸作垂線段PP′,P′為垂足.
(1)求線段PP′中點M的軌跡C的方程.
(2)過點Q(一2,0)作直線l與曲線C交于A、B兩點,設(shè)N是過點(-
4
17
,0),且以言
a
=(0,1)
為方向向量的直線上一動點,滿足
ON
=
OA
+
OB
(O為坐標(biāo)原點),問是否存在這樣的直線l,使得四邊形OANB為矩形?若存在,求出直線Z的方程;若不存在,說明理由.

查看答案和解析>>

在直角坐標(biāo)平面上,O為原點,M為動點,|
OM
|=
5
ON
=
2
5
5
OM
.過點M作MM1⊥y軸于M1,過N作NN1⊥x軸于點N1,
OT
=
M1M
+
N1N
.記點T的軌跡為曲線C,點A(5,0)、B(1,0),過點A作直線l交曲線C于兩個不同的點P、Q(點Q在A與P之間).
(Ⅰ)求曲線C的方程;
(Ⅱ)是否存在直線l,使得|BP|=|BQ|,并說明理由.

查看答案和解析>>


同步練習(xí)冊答案