3.圓的一條直徑的端點(diǎn)是A.則圓的方程是 查看更多

 

題目列表(包括答案和解析)

已知某圓的一條直徑的端點(diǎn)分別是A(4,0),B(0,-6),則該圓的標(biāo)準(zhǔn)萬(wàn)程是


  1. A.
    (x+2)2+(y-3)2=13
  2. B.
    (x+2)2+(y-3)2=52
  3. C.
    (x-2)2+(y+3)2=52
  4. D.
    (x-2)2+(y+3)2=13

查看答案和解析>>

以(1,1)和(2,-2)為一條直徑的兩個(gè)端點(diǎn)的圓的方程是( 。

查看答案和解析>>

以(1,1)和(2,-2)為一條直徑的兩個(gè)端點(diǎn)的圓的方程是( 。
A.x2+y2-3x+y-
5
4
=0
B.x2+y2-3x-y-
5
4
=0
C.x2+y2+3x-y=0D.x2+y2-3x+y=0

查看答案和解析>>

以(1,1)和(2,-2)為一條直徑的兩個(gè)端點(diǎn)的圓的方程是( )
A.
B.
C.x2+y2+3x-y=0
D.x2+y2-3x+y=0

查看答案和解析>>

(2012•資陽(yáng)三模)已知某圓的一條直徑的端點(diǎn)分別是A(4,0),B(0,-6),則該圓的標(biāo)準(zhǔn)方程是( 。

查看答案和解析>>

一、選擇題:

1.D    2.C    3.A    4.A    5.B    6.A    7.B    8.C    9.B    10.C

11.B   12.C

二、選擇題;

        <span id="9bct4"><video id="9bct4"></video></span>
        <p id="9bct4"></p>

          tesoon

          三、解答題;

          17.(10分)

              …..3分

          得,

          當(dāng)時(shí),;  6分   當(dāng)時(shí),       ……..10分

          18.(12分)

          (1)取PD的中點(diǎn)E,連接AE、EN

          ∵EN平行且等于DC,而DC平行且等于AM   

          ∴AMNE為平行四邊形MN∥AE  

          ∴MN∥平面PAD (6分)

          (2)∵PA⊥平面ABCD∴CD⊥PA又

          ∵ABCD為矩形,∴CD⊥AD

          ∴CD⊥AE,AE∥MN,MN⊥CD  (3分)

          ∵AD⊥DC,PD⊥DC ∴∠ADP=45°

          又E是斜邊的PD的中點(diǎn)∴AE⊥PD,

          ∴MN⊥PD∴MN⊥CD,∴MH⊥平面PCD.(6分)

          19.(12分)

          (1)

          所以              …….. 6分

          (2)

          因?yàn)?sub>

          所以,

          20.(12分)

          (1)由題意知

          當(dāng)……………………2分

          當(dāng)

          兩式相減得整理得:          ……..4分

          是以2為首項(xiàng),2為公比的等比數(shù)列,   ……. 6分

          (2)由(1)知        ……..1分

             ①

            ②

          ①―②得   ……… 9分

          …4分      ………6分

          21.(12分)

          (1)由題有,∵的兩個(gè)極值點(diǎn),

          是方程的兩個(gè)實(shí)根,

          ∵a>0,∴

          又∵,∴,即;  ..6分

          (2)令,則

          ,由,

          上是增函數(shù),在區(qū)間上是減函數(shù), ∴,

          ,∴b的最大值是.     …..6分

          22.(12分)

          (1)拋物線的準(zhǔn)線,于是,4+=5,∴p=2.

          ∴拋物線方程為.    (4分)

          (2)∵點(diǎn)A的坐標(biāo)是(4,4),由題意得B(0,4),M(0,2).又∵F(1,0),

          ,又MN⊥FA,∴,則FA的方程為

          MN的方程為,解方程組得,

          ∴N       …..4分

          (3)由題意得,圓M的圓心是點(diǎn)(0,2),半徑為2.

          當(dāng)m=4時(shí),直線AK的方程為x=4,此時(shí),直線AK與圓M相離.

          當(dāng)時(shí),直線AK的方程為即為,

          圓心M(0,2)到直線AK的距離,令d>2.解得m>1,

          所以,當(dāng)m>1時(shí),直線AK與圓M相離;當(dāng)m=1時(shí),直線AK與圓M相切,

          當(dāng)m<1時(shí),直線AK與圓M相交.             ………. 4分

           

           

           


          同步練習(xí)冊(cè)答案