A. B. 查看更多

 

題目列表(包括答案和解析)

18、a、b、c是△ABC的三邊,求證a2+b2+c2<2(ab+bc+ac).

查看答案和解析>>

A、B、C是我軍三個炮兵陣地,A在B的正東方向相距6千米,C在B的北30°西方向,相距4千米,P為敵炮陣地.某時刻,A發(fā)現(xiàn)敵炮陣地的某信號,由于B、C比A距P更遠,因此,4秒后,B、C才同時發(fā)現(xiàn)這一信號(該信號的傳播速度為每秒1千米).若從A炮擊敵陣地P,求炮擊的方位角.

查看答案和解析>>

5、A、B、C三個命題,如果A是B的充要條件,C是B的充分不必要條件,則C是A的( 。

查看答案和解析>>

A、B、C為△ABC的三內(nèi)角,且其對邊分別為a、b、c,若
m
=(-cos
A
2
,sin
A
2
)
n
=(cos
A
2
,sin
A
2
)
,且
m
n
=
1
2

(Ⅰ) 求角A;
(Ⅱ) 若a=2
3
,三角形面積S=
3
,求b+c的值.

查看答案和解析>>

a、b、c為三條不重合的直線,α、β、γ為三個不重合的平面,直線均不在平面內(nèi),給出六個命題:
a∥c
b∥c
?a∥b;②
a∥γ
b∥γ
?a∥b;③
α∥c
β∥c
?α∥β
;
α∥c
a∥c
?a∥α;⑤
α∥γ
β∥γ
?α∥β;⑥
α∥γ
a∥γ
?a∥α.

其中正確的命題是
 
.(將正確的序號都填上)

查看答案和解析>>

 

 

一、選擇題:

l         題號

l        

l        

l        

l        

l        

l        

l        

l        

l         答案

l        

l        

l        

l        

l        

l        

l        

l        

 

1、解析:,N=,

.答案:

2、解析:由題意得,

答案:

3、解析:程序的運行結(jié)果是.答案:

4、解析:與直線垂直的切線的斜率必為4,而,所以,切點為.切線為,即,答案:

5、解析:由一元二次方程有實根的條件,而,由幾何概率得有實根的概率為.答案:

6、解析:如果兩條平行直線中的一條垂直于一個平面,那么另一條也垂直于這個平面,所以正確;如果兩個平面與同一條直線垂直,則這兩個平面平行,所以正確;

如果一個平面經(jīng)過了另一個平面的一條垂線,則這兩個平面平行,所以也正確;

只有選項錯誤.答案:

7、解析:由題意,得,答案:

8、解析:的圖象先向左平移,橫坐標變?yōu)樵瓉淼?sub>.答案:

二、填空題:

l         題號

l        

l        

l        

l        

l        

l        

l        

l         答案

l        

l        

l        

l        

l        

l        

l        

 

9、解析:若,則,解得

10、解析:由題意

11、解析:

12、解析:令,則,令,則,

,則,令,則,

,則,令,則,

…,所以

13、解析:;則圓心坐標為

由點到直線的距離公式得圓心到直線的距離為,所以要求的最短距離為

14、解析:由柯西不等式,答案:

15、解析:顯然為相似三角形,又,所以的面積等于9cm

 

三、解答題:本大題共6小題,滿分80分.解答須寫出文字說明、證明過程和演算步驟.

16、解: (1),    ……………………… 2分

 ∴,………………………………………………… 4分

 解得.………………………………………………………………… 6分

(2)由,得:,     ……………………… 8分

    ………………………………… 10分

.…………………………………………………………… 12分

17、解:(1)… 2分

的最小正周期,      …………………………………4分

且當(dāng)單調(diào)遞增.

的單調(diào)遞增區(qū)間(寫成開區(qū)間不扣分).……6分

(2)當(dāng),當(dāng),即

所以.      …………………………9分

的對稱軸.      …………………12分

18、解:

(1)解法一:“有放回摸兩次,顏色不同”指“先白再黑”或“先黑再白”,

記“有放回摸球兩次,兩球恰好顏色不同”為事件,………………………2分

∵“兩球恰好顏色不同”共種可能,…………………………5分

. ……………………………………………………7分

解法二:“有放回摸取”可看作獨立重復(fù)實驗, …………………………2分

∵每次摸出一球得白球的概率為.………………………………5分

∴“有放回摸兩次,顏色不同”的概率為. …………………7分

(2)設(shè)摸得白球的個數(shù)為,依題意得:

,,

… 10分

,……………………………………12分

.……………………14分

19、(1)證明:  連結(jié),交于點,連結(jié).………………………1分

  是菱形, ∴的中點. ………………………………………2分

  的中點, ∴.   …………………………………3分

  平面平面, ∴平面.  ……………… 6分

(2)解法一:

 平面,平面,∴ .

,∴.  …………………………… 7分

是菱形,  ∴.

平面.  …………………………………………………………8分

,垂足為,連接,則,

所以為二面角的平面角. ………………………………… 10分

,∴,.

在Rt△中,=,…………………………… 12分

.…………………………… 13分

∴二面角的正切值是. ………………………… 14分

解法二:如圖,以點為坐標原點,線段的垂直平分線所在直線為軸,所在直線為軸,所在直線為軸,建立空間直角坐標系,令,……………2分

,,

.  ……………4分

設(shè)平面的一個法向量為,

,得,

,則,∴.  …………………7分   

平面,平面,

.  ………………………………… 8分

,∴.

是菱形,∴.

,∴平面.…………………………… 9分

是平面的一個法向量,.………………… 10分

,

,  …………………… 12分 

.…………………………………… 13分 

∴二面角的正切值是.  ……………………… 14分

20、解:圓的方程為,則其直徑長,圓心為,設(shè)的方程為,即,代入拋物線方程得:,設(shè),

,   ………………………………2分

.  ……………………4分

…6分

, ………… 7分

因此.    ………………………………… 8分

據(jù)等差,,  …………… 10分

所以,,…………… 12分

即:方程為.   …………………14分

21、解:

(1)因為, …………………………2分 

所以,滿足條件.   …………………3分

又因為當(dāng)時,,所以方程有實數(shù)根

所以函數(shù)是集合M中的元素. …………………………4分

(2)假設(shè)方程存在兩個實數(shù)根

同步練習(xí)冊答案