(2)求點到平面的距離, 查看更多

 

題目列表(包括答案和解析)









(1)求點到平面的距離;
(2)求與平面所成角的大小。

查看答案和解析>>

在平面直角坐標系xOy中,已知對于任意實數(shù)k,直線(
3
k+1)x+(k-
3
)y-(3k+
3
)=0
恒過定點F.設橢圓C的中心在原點,一個焦點為F,且橢圓C上的點到F的最大距離為2+
3

(1)求橢圓C的方程;
(2)設(m,n)是橢圓C上的任意一點,圓O:x2+y2=r2(r>0)與橢圓C有4個相異公共點,試分別判斷圓O與直線l1:mx+ny=1和l2:mx+ny=4的位置關系.

查看答案和解析>>

精英家教網(wǎng)在平面直角坐標系中,橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0),圓O:x2+y2=a2,且過點A(
a2
c
,0)所作圓的兩條切線互相垂直.
(Ⅰ)求橢圓離心率;
(Ⅱ)若直線y=2
3
與圓交于D、E;與橢圓交于M、N,且DE=2MN,求橢圓的方程;
(Ⅲ)設點T(0,3)在橢圓內(nèi)部,若橢圓C上的點到點P的最遠距離不大于5
2
,求橢圓C的短軸長的取值范圍.

查看答案和解析>>

在平面直角坐標系xOy中,橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
上一點到橢圓E的兩個焦點距離之和為2
3
,橢圓E的離心率為
6
3

(1)求橢圓E的方程;
(2)若b為橢圓E的半短軸長,記C(0,b),直線l經(jīng)過點C且斜率為2,與直線l平行的直線AB過點(1,0)且交橢圓于A、B兩點,求△ABC的面積S的值.

查看答案和解析>>

在平面直角坐標系xOy中,已知點A(0,-1),B點在直線y=-3上,M點滿足
MB
OA
,
MA
AB
=
MB
BA
,M點的軌跡為曲線C.
(Ⅰ)求C的方程;
(Ⅱ)P為C上的動點,l為C在P點處的切線,求O點到l距離的最小值.

查看答案和解析>>

 

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

C

C

A

A

A

D

B

C

C

B

C

B

 

 

13.    14. 2    15.    16. ①②③

 

17. 解:(1)由得:,             2分

即b = c = 1-a,        4分

時,,

  因為,有1-a > 0,,得a = -1

 故                      8分

(2)∵是奇函數(shù),且將的圖象先向右平移個單位,再向上平移1個單位,可以得到的圖象,∴是滿足條件的一個平移向量.        12分

18. 解:(1)由等可能事件的概率意義及概率計算公式得;   5分

 (2)設選取的5只福娃恰好距離組成完整“奧運會吉祥物”差兩種福娃記為事件B,

依題意可知,至少差兩種福娃,只能是差兩種福娃,則

6ec8aac122bd4f6e        11分

故選取的5只福娃距離組成完整“奧運會吉祥物”至少差兩種福娃的概率為  12分

 

19.     解:(1)

又平面平面

………………4分

(2)

∴點到平面的距離即求點到平面的距離

   取中點,連結(jié)

為等邊三角形

                                                               

又由(1)知

  ∴點到平面的距離即點到平面的距離為………………8分

   (3)二面角即二面角

   過,垂足為點,連結(jié)

由(2)及三垂線定理知

為二面角的平面角

  

   …12分

解法2:(1)如圖,取中點,連結(jié)

為等邊三角形

又∵平面平面   

建立空間直角坐標系,則有

,

………………4分

(2)設平面的一個法向量為

∴點到平面的距離即求點到平面的距離

………………………………8分

(3)平面的一個法向量為

設平面的一個法向量為

,

∴二面角的大小為…………………………………12分

 

 

20. 解:(1)由題意知

當n=1時,

兩式相減得

整理得:)       ………………………………………………(4分)

∴數(shù)列{an}是為首項,2為公比的等比數(shù)列.

            ……………………………………(5分)

(2)

           …………………………………………………………(6分)

     …… ①

     …… ②

①-②得         ……………(9分)

                   ………………………(11分)

          ………………………………………………………(12分)

 

21. 解:(1)由,∴ 

,則,  

   

同理,有,∴為方程的兩根

. 設,則     ①

  ②

由①、②消去得點的軌跡方程為.   ………………………………6分

(2)

∴當時,.        ………………………………12分

 

 

22. 解:(1)

………………………………………………………………………2分

的單調(diào)遞增區(qū)間為,,單調(diào)遞減區(qū)間為…………5分

(2)由題

……………………6分

……………………………………………7分

 

 

 

 

 

 

 

 

 

此時,,有一個交點;…………………………9分

時,

   

  

 

 

  

,

∴當時,有一個交點;

時,有兩個交點;

      當時,,有一個交點.………………………13分

綜上可知,當時,有一個交點;

          當時,有兩個交點.…………………………………14分

 

 

 


同步練習冊答案