(2)若.即時(shí).則當(dāng)時(shí).有 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)為實(shí)數(shù)).

(Ⅰ)當(dāng)時(shí),求的最小值;

(Ⅱ)若上是單調(diào)函數(shù),求的取值范圍.

【解析】第一問中由題意可知:. ∵ ∴  ∴.

當(dāng)時(shí),; 當(dāng)時(shí),. 故.

第二問.

當(dāng)時(shí),,在上有,遞增,符合題意;  

,則,∴上恒成立.轉(zhuǎn)化后解決最值即可。

解:(Ⅰ) 由題意可知:. ∵ ∴  ∴.

當(dāng)時(shí),; 當(dāng)時(shí),. 故.

(Ⅱ) .

當(dāng)時(shí),,在上有遞增,符合題意;  

,則,∴上恒成立.∵二次函數(shù)的對稱軸為,且

  .   綜上

 

查看答案和解析>>

為方便游客出行,某旅游點(diǎn)有50輛自行車供租賃使用,管理這些自行車的費(fèi)用是每日115元.根據(jù)經(jīng)驗(yàn),若每輛自行車的日租金不超過6元,則自行車可以全部租出;若超過6元,則每超過1元,租不出的自行車就增加3輛.設(shè)每輛自行車的日租金x(元)(3≤x≤20,x∈N*),用y(元)表示出租自行車的日凈收入(即一日出租自行車的總收入減去管理費(fèi)用后的所得)
(1)求函數(shù)y=f(x)的解析式;
(2)試問當(dāng)每輛自行車的日租金為多少元時(shí),才能使一日的凈收入最多?

查看答案和解析>>

若有窮數(shù)列是正整數(shù)),滿足,

,即是正整數(shù),且),就稱該數(shù)列為“對稱數(shù)列”.

(1)已知數(shù)列是項(xiàng)數(shù)為7的對稱數(shù)列,且成等差數(shù)列,,試寫出的每一項(xiàng).

(2)已知是項(xiàng)數(shù)為的對稱數(shù)列,且構(gòu)成首項(xiàng)為50,公差為的等差數(shù)列,數(shù)列的前項(xiàng)和為,則當(dāng)為何值時(shí),取到最大值?最大值為多少?

(3)對于給定的正整數(shù),試寫出所有項(xiàng)數(shù)不超過的對稱數(shù)列,使得成為數(shù)列中的連續(xù)項(xiàng);當(dāng)時(shí),試求其中一個(gè)數(shù)列的前2008項(xiàng)和

 

查看答案和解析>>

若有窮數(shù)列是正整數(shù)),滿足,,

,即是正整數(shù),且),就稱該數(shù)列為“對稱數(shù)列”.

(1)已知數(shù)列是項(xiàng)數(shù)為7的對稱數(shù)列,且成等差數(shù)列,,試寫出的每一項(xiàng).

(2)已知是項(xiàng)數(shù)為的對稱數(shù)列,且構(gòu)成首項(xiàng)為50,公差為的等差數(shù)列,數(shù)列的前項(xiàng)和為,則當(dāng)為何值時(shí),取到最大值?最大值為多少?

(3)對于給定的正整數(shù),試寫出所有項(xiàng)數(shù)不超過的對稱數(shù)列,使得成為數(shù)列中的連續(xù)項(xiàng);當(dāng)時(shí),試求其中一個(gè)數(shù)列的前2008項(xiàng)和

查看答案和解析>>

15、已知集合M={1,2,3,4},A⊆M,集合A中所有元素的乘積稱為集合A的“累積值”,且規(guī)定:當(dāng)集合A只有一個(gè)元素時(shí),其累積值即為該元素的數(shù)值,空集的累積值為0.設(shè)集合A的累積值為n.
(1)若n=3,則這樣的集合A共有
2
個(gè);(2)若n為偶數(shù),則這樣的集合A共有
13
個(gè).

查看答案和解析>>


同步練習(xí)冊答案