又平面CDE. EM平面CDE. ∴ FO∥平面CDE和已知條件.在等邊△CDE中. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分13分)如圖,三棱柱ABC—A1B1C1的所有棱長都是2,又平面

ABC,D、E分別是AC、CC1的中點。

(1)求證:平面A1BD;

(2)求二面角D—BA1—A的余弦值;

(3)求點B1到平面A1BD的距離。

 

 

 

查看答案和解析>>

如圖,在底面是正方形的四棱錐P—ABCD中,平面PCD⊥平面ABCD,PC=PD=CD=2.

(I)求證:PD⊥BC;

(II)求二面角B—PD—C的正切值。

【解析】第一問利用∵平面PCD⊥平面ABCD,又∵平面PCD∩平面ABCD=CD,

BC在平面ABCD內(nèi) ,BC⊥CD,∴BC⊥平面PCD.

∴PD⊥BC.

第二問中解:取PD的中點E,連接CE、BE,

為正三角形,

由(I)知BC⊥平面PCD,∴CE是BE在平面PCD內(nèi)的射影,

∴BE⊥PD.∴∠CEB為二面角B—PD—C的平面角,進(jìn)而求解。

 

查看答案和解析>>

如圖所示,已知直線不共面,直線,直線,又平面平面,平面,求證:三點不共線.

查看答案和解析>>

(本小題滿分12分)如圖,在矩形中,,又⊥平面,
(Ⅰ)若在邊上存在一點,使,
的取值范圍;
(Ⅱ)當(dāng)邊上存在唯一點,使時,
求二面角的余弦值.

查看答案和解析>>

如圖所示的長方體中,底面是邊長為的正方形,的交點,是線段的中點.

(Ⅰ)求證:平面;

(Ⅱ)求證:平面;

(Ⅲ)求二面角的大小.

【解析】本試題主要考查了線面平行的判定定理和線面垂直的判定定理,以及二面角的求解的運用。中利用,又平面平面,∴平面,又,∴平面. 可得證明

(3)因為∴為面的法向量.∵,,

為平面的法向量.∴利用法向量的夾角公式,,

的夾角為,即二面角的大小為

方法一:解:(Ⅰ)建立如圖所示的空間直角坐標(biāo)系.連接,則點、,

,又點,∴

,且不共線,∴

平面,平面,∴平面.…………………4分

(Ⅱ)∵

,,即,,

,∴平面.   ………8分

(Ⅲ)∵,,∴平面,

為面的法向量.∵

為平面的法向量.∴,

的夾角為,即二面角的大小為

 

查看答案和解析>>


同步練習(xí)冊答案