(I)由.得是的中點(diǎn). 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)

如圖,在邊長為4的菱形中,.點(diǎn)分別在邊上,點(diǎn)與點(diǎn)不重合,,.沿翻折到的位置,使平面⊥平面

(1)求證:⊥平面

(2)當(dāng)取得最小值時,請解答以下問題:

(i)求四棱錐的體積;

(ii)若點(diǎn)滿足= (),試探究:直線與平面所成角的大小是否一定大于?并說明理由.

 

查看答案和解析>>

已知函數(shù)。

(I)求f(x)的單調(diào)區(qū)間;

(II)若對任意x∈[1,e],使得g(x)≥-x2+(a+2)x恒成立,求實(shí)數(shù)a的取值范圍;

(III)設(shè)F(x)=,曲線y=F(x)上是否總存在兩點(diǎn)P,Q,使得△POQ是以O(shè)(O為坐標(biāo)原點(diǎn))為鈍角柄點(diǎn)的鈍角三角開,且最長邊的中點(diǎn)在y軸上?請說明理由。

查看答案和解析>>

已知函數(shù)。
(I)求f(x)的單調(diào)區(qū)間;
(II)若對任意x∈[1,e],使得g(x)≥-x2+(a+2)x恒成立,求實(shí)數(shù)a的取值范圍;
(III)設(shè)F(x)=,曲線y=F(x)上是否總存在兩點(diǎn)P,Q,使得△POQ是以O(shè)(O為坐標(biāo)原點(diǎn))為鈍角柄點(diǎn)的鈍角三角開,且最長邊的中點(diǎn)在y軸上?請說明理由。

查看答案和解析>>

已知函數(shù)f(x)=lnx,g(x)=(m+1)x2-x(m≠-1).
(I)若函數(shù)y=f(x)與y=g(x)的圖象在公共點(diǎn)P處有相同的切線,求實(shí)數(shù)m的值和P的坐標(biāo);
(II)若函數(shù)y=f(x)與y=g(x)的圖象有兩個不同的交點(diǎn)M、N,求實(shí)數(shù)m的取值范圍;
(III)在(II)的條件下,過線段MN的中點(diǎn)作x軸的垂線分別與f(x)的圖象和g(x)的圖象交于S、T點(diǎn),以S點(diǎn)為切點(diǎn)
作f(x)的切線l1,以T為切點(diǎn)作g(x)的切線l2,是否存在實(shí)數(shù)m,使得l1∥l2?如果存在,求出m的值;如果不存在,請說明理由.

查看答案和解析>>

(2009•大連二模)(I)已知函數(shù)f(x)=x-
1
x
,x∈(
1
4
,
1
2
),P(x1,f(x1)),Q(x2,f(x2))是f(x)
圖象上的任意兩點(diǎn),且x1<x2
①求直線PQ的斜率kPQ的取值范圍及f(x)圖象上任一點(diǎn)切線的斜率k的取值范圍;
②由①你得到的結(jié)論是:若函數(shù)f(x)在[a,b]上有導(dǎo)函數(shù)f′(x),且f(a)、f(b)存在,則在(a,b)內(nèi)至少存在一點(diǎn)ξ,使得f′(ξ)=
f(b)-f(a)
b-a
f(b)-f(a)
b-a
成立(用a,b,f(a),f(b)表示,只寫出結(jié)論,不必證明)
(II)設(shè)函數(shù)g(x)的導(dǎo)函數(shù)為g′(x),且g′(x)為單調(diào)遞減函數(shù),g(0)=0.試運(yùn)用你在②中得到的結(jié)論證明:
當(dāng)x∈(0,1)時,f(1)x<g(x).

查看答案和解析>>


同步練習(xí)冊答案