(Ⅱ)若方程至少有兩個(gè)不相同的實(shí)數(shù)根.求取值的集合. 查看更多

 

題目列表(包括答案和解析)

設(shè)函數(shù)其中b>0,c∈R.當(dāng)且僅當(dāng)x=-2時(shí),函數(shù)f(x)取得最小值-2.
(1)求函數(shù)f(x)的表達(dá)式;
(2)若方程f(x)=x+a(a∈R)至少有兩個(gè)不相同的實(shí)數(shù)根,求a取值的集合.

查看答案和解析>>

設(shè)函數(shù)其中b>0,c∈R.當(dāng)且僅當(dāng)x=-2時(shí),函數(shù)f(x)取得最小值-2.
(1)求函數(shù)f(x)的表達(dá)式;
(2)若方程f(x)=x+a(a∈R)至少有兩個(gè)不相同的實(shí)數(shù)根,求a取值的集合.

查看答案和解析>>

設(shè)函數(shù)數(shù)學(xué)公式其中b>0,c∈R.當(dāng)且僅當(dāng)x=-2時(shí),函數(shù)f(x)取得最小值-2.
(1)求函數(shù)f(x)的表達(dá)式;
(2)若方程f(x)=x+a(a∈R)至少有兩個(gè)不相同的實(shí)數(shù)根,求a取值的集合.

查看答案和解析>>


(本小題滿分14分)
已知函數(shù),當(dāng)時(shí),取得極小值.
(1)求,的值;
(2)設(shè)直線,曲線.若直線與曲線同時(shí)滿足下列兩個(gè)條件:
①直線與曲線相切且至少有兩個(gè)切點(diǎn);
②對(duì)任意都有.則稱直線為曲線的“上夾線”.
試證明:直線是曲線的“上夾線”.
(3)記,設(shè)是方程的實(shí)數(shù)根,若對(duì)于定義域中任意的、,當(dāng),且時(shí),問(wèn)是否存在一個(gè)最小的正整數(shù),使得恒成立,若存在請(qǐng)求出的值;若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

 

(本小題滿分14分)

已知函數(shù),當(dāng)時(shí),取得極小值.

(1)求,的值;

(2)設(shè)直線,曲線.若直線與曲線同時(shí)滿足下列兩個(gè)條件:

①直線與曲線相切且至少有兩個(gè)切點(diǎn);

②對(duì)任意都有.則稱直線為曲線的“上夾線”.

試證明:直線是曲線的“上夾線”.

(3)記,設(shè)是方程的實(shí)數(shù)根,若對(duì)于定義域中任意的、,當(dāng),且時(shí),問(wèn)是否存在一個(gè)最小的正整數(shù),使得恒成立,若存在請(qǐng)求出的值;若不存在請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

一、選擇題

<dfn id="ifz29"></dfn>
    • 20080917

      二、填空題

      13.1    14.(-1,3)    15.5    16.②③④

      三、解答題

      17.解:(Ⅰ)

            ………………4分

        

        當(dāng)   ……2分

      (Ⅱ)  ………3分

        又

               ………………3分

      18.解:(Ⅰ)乙在第3次獨(dú)立地射時(shí)(每次射擊相互獨(dú)立)才首次命中10環(huán)的概率為

        

      (Ⅱ)甲、乙兩名運(yùn)動(dòng)員各自獨(dú)立射擊1次,兩人中恰有一人命中10環(huán)的概率為

        

      19.解:(Ⅰ)以D為坐標(biāo)原點(diǎn),DA所在的直線為x軸、DC所在的直線為y軸、DP所在的直線為z軸,建立如圖所示的空間直角坐標(biāo)系D-xyz.

        則A(1,0,0),B(1,1,0),C(0,1,0),

        P(0,0,1)

        

        

         (Ⅱ)

        

        

        、

        

        

        解法二:

        設(shè)平面BCE的法向量為

        由

                   ………………2分

        設(shè)平面FCE的法向量為

        由

        

             …………2分

      20.(Ⅰ)由題意,得

        

         (Ⅱ)①當(dāng)

        

      ②當(dāng)

        令

        

      21.解:(Ⅰ)設(shè)橢圓方程為

        由題意,得

      所求橢圓方程;  ……………5分

      (Ⅱ)設(shè)拋物線C的方程為.

        由.

        拋物線C的方程為

        

      ,設(shè)、,則有

      ,.

        

        代入直線

        

      22.解:(Ⅰ)

        

      (Ⅱ)記方程①:方程②:

        分別研究方程①和方程②的根的情況:

         (1)方程①有且僅有一個(gè)實(shí)數(shù)根方程①?zèng)]有實(shí)數(shù)根

         (2)方程②有且僅有兩個(gè)不相同的實(shí)數(shù)根,即方程有兩個(gè)不相同的非正實(shí)數(shù)根.

        

        方程②有且僅有一個(gè)不相同的實(shí)數(shù)根,即方程有且僅有一個(gè)蜚 正實(shí)數(shù)根.

        

        綜上可知:當(dāng)方程有三個(gè)不相同的實(shí)數(shù)根時(shí),

        當(dāng)方程有且僅有兩個(gè)不相同的實(shí)數(shù)根時(shí),

        符合題意的實(shí)數(shù)取值的集合為

       


      同步練習(xí)冊(cè)答案