19. Cl2+2OH- =Cl-+ClO-+H2O (2) Cl2+H2O == HCl+HClO 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)

某市為了對學(xué)生的數(shù)理(數(shù)學(xué)與物理)學(xué)習(xí)能力進(jìn)行分析,從10000名學(xué)生中隨機(jī)抽出100位學(xué)生的數(shù)理綜合學(xué)習(xí)能力等級分?jǐn)?shù)(6分制)作為樣本,分?jǐn)?shù)頻數(shù)分布如下表:

等級得分

人數(shù)

3

17

30

30

17

3

(Ⅰ)如果以能力等級分?jǐn)?shù)大于4分作為良好的標(biāo)準(zhǔn),從樣本中任意抽。裁麑W(xué)生,求恰有1名學(xué)生為良好的概率;

(Ⅱ)統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點值(例如區(qū)間的中點值為1.5)作為代表:

(ⅰ)據(jù)此,計算這100名學(xué)生數(shù)理學(xué)習(xí)能力等級分?jǐn)?shù)的期望及標(biāo)準(zhǔn)差(精確到0.1);

(ⅱ) 若總體服從正態(tài)分布,以樣本估計總體,估計該市這10000名學(xué)生中數(shù)理學(xué)習(xí)能力等級在范圍內(nèi)的人數(shù) .

(Ⅲ)從這10000名學(xué)生中任意抽取5名同學(xué),

他們數(shù)學(xué)與物理單科學(xué)習(xí)能力等級分

數(shù)如下表:

(。┱埉嫵錾媳頂(shù)據(jù)的散點圖;

(ⅱ)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程(附參考數(shù)據(jù):

 

 

查看答案和解析>>

(本小題滿分12分)
某市為了對學(xué)生的數(shù)理(數(shù)學(xué)與物理)學(xué)習(xí)能力進(jìn)行分析,從10000名學(xué)生中隨機(jī)抽出100位學(xué)生的數(shù)理綜合學(xué)習(xí)能力等級分?jǐn)?shù)(6分制)作為樣本,分?jǐn)?shù)頻數(shù)分布如下表:

等級得分






人數(shù)
3
17
30
30
17
3
(Ⅰ)如果以能力等級分?jǐn)?shù)大于4分作為良好的標(biāo)準(zhǔn),從樣本中任意抽。裁麑W(xué)生,求恰有1名學(xué)生為良好的概率;
(Ⅱ)統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點值(例如區(qū)間的中點值為1.5)作為代表:
(ⅰ)據(jù)此,計算這100名學(xué)生數(shù)理學(xué)習(xí)能力等級分?jǐn)?shù)的期望及標(biāo)準(zhǔn)差(精確到0.1);
(ⅱ) 若總體服從正態(tài)分布,以樣本估計總體,估計該市這10000名學(xué)生中數(shù)理學(xué)習(xí)能力等級在范圍內(nèi)的人數(shù) .
(Ⅲ)從這10000名學(xué)生中任意抽取5名同學(xué),
他們數(shù)學(xué)與物理單科學(xué)習(xí)能力等級分
數(shù)如下表:

(。┱埉嫵錾媳頂(shù)據(jù)的散點圖;
(ⅱ)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程(附參考數(shù)據(jù):

查看答案和解析>>

 (本題滿分16分,第(1)小題4分,第(2)小題6分,第(3)小題6分)

已知橢圓C的長軸長與短軸長之比為,焦點坐標(biāo)分別為,。

(1)求橢圓C的標(biāo)準(zhǔn)方程;

(2)已知,,是橢圓C上異于、的任意一點,直線、分別交y軸于、,求的值;

(3)在(2)的條件下,若,,且,分別以O(shè)G、OH為邊作兩正方形,求此兩正方形的面積和的最小值,并求出取得最小值時的G、H點坐標(biāo)

 

 

 

 

 

 

 

 

查看答案和解析>>

已知中心在原點O,焦點F1、F2在x軸上的橢圓E經(jīng)過點C(2,2),且拋物線的焦點為F1.

(Ⅰ)求橢圓E的方程;

(Ⅱ)垂直于OC的直線l與橢圓E交于A、B兩點,當(dāng)以AB為直徑的圓P與y軸相切時,求直線l的方程和圓P的方程.

【解析】本試題主要考查了橢圓的方程的求解以及直線與橢圓的位置關(guān)系的運用。第一問中,設(shè)出橢圓的方程,然后結(jié)合拋物線的焦點坐標(biāo)得到,又因為,這樣可知得到。第二問中設(shè)直線l的方程為y=-x+m與橢圓聯(lián)立方程組可以得到

,再利用可以結(jié)合韋達(dá)定理求解得到m的值和圓p的方程。

解:(Ⅰ)設(shè)橢圓E的方程為

①………………………………1分

  ②………………2分

  ③       由①、②、③得a2=12,b2=6…………3分

所以橢圓E的方程為…………………………4分

(Ⅱ)依題意,直線OC斜率為1,由此設(shè)直線l的方程為y=-x+m,……………5分

 代入橢圓E方程,得…………………………6分

………………………7分

、………………8分

………………………9分

……………………………10分

    當(dāng)m=3時,直線l方程為y=-x+3,此時,x1 +x2=4,圓心為(2,1),半徑為2,

圓P的方程為(x-2)2+(y-1)2=4;………………………………11分

同理,當(dāng)m=-3時,直線l方程為y=-x-3,

圓P的方程為(x+2)2+(y+1)2=4

 

查看答案和解析>>

(本題滿分8分.老教材試題第1小題4分,第2小題4分;新教材試題第1小題3分,第2小題5分.)
(老教材)
設(shè)a為實數(shù),方程2x2-8x+a+1=0的一個虛根的模是
5

(1)求a的值;
(2)在復(fù)數(shù)范圍內(nèi)求方程的解.
(新教材)
設(shè)函數(shù)f(x)=2x+p,(p為常數(shù)且p∈R)
(1)若f(3)=5,求f(x)的解析式;
(2)在滿足(1)的條件下,解方程:f-1(x)=2+log2x2

查看答案和解析>>


同步練習(xí)冊答案