(Ⅰ)求角的大小, 查看更多

 

題目列表(包括答案和解析)

某小區(qū)規(guī)劃一塊周長為2a(a為正常數(shù))的矩形停車場,其中如圖所示的直角三角形ADP內(nèi)為綠化區(qū)域.且∠PAC=∠CAB.設(shè)矩形的長AB=x,AB>AD
(1)求線段DP的長關(guān)于x的函數(shù)l(x)表達(dá)式并指出定義域;
(2)應(yīng)如何規(guī)劃矩形的長AB,使得綠化面積最大?

查看答案和解析>>

(本小題12分)設(shè)函數(shù).

(1)求函數(shù)的最大值和最小正周期;

設(shè)A,B,C為的三個內(nèi)角,若且C為銳角,求.

查看答案和解析>>

(意大利餡餅問題)山姆的意大利餡餅屋中設(shè)有一個投鏢靶 該靶為正方形板.邊長為18厘米,掛于前門附近的墻上,顧客花兩角伍分的硬幣便可投一鏢并可有機(jī)會贏得一種意大利餡餅中的一個,投鏢靶中畫有三個同心圓,圓心在靶的中心,當(dāng)投鏢擊中半徑為1厘米的最內(nèi)層圓域時(shí).可得到一個大餡餅;當(dāng)擊中半徑為1厘米到2厘米之間的環(huán)域時(shí),可得到一個中餡餅;如果擊中半徑為2厘米到3厘米之間的環(huán)域時(shí),可得到一個小餡餅,如果擊中靶上的其他部分,則得不到諂餅,我們假設(shè)每一個顧客都能投鏢中靶,并假設(shè)每個圓的周邊線沒有寬度,即每個投鏢不會擊中線上,試求一顧客將嬴得:

(a)一張大餡餅,

(b)一張中餡餅,

(c)一張小餡餅,

(d)沒得到餡餅的概率

查看答案和解析>>

(本小題滿分12分)

有一塊邊長為6m的正方形鋼板,將其四個角各截去一個邊長為x的小正方形,然后焊接成一個無蓋的蓄水池。

(Ⅰ)寫出以x為自變量的容積V的函數(shù)解析式V(x),并求函數(shù)V(x)的定義域;

(Ⅱ)指出函數(shù)V(x)的單調(diào)區(qū)間;

(Ⅲ)蓄水池的底邊為多少時(shí),蓄水池的容積最大?最大容積是多少?

查看答案和解析>>


(本小題滿分12分) 已知向量,,.
(1)若求向量的夾角;
(2)當(dāng)時(shí),求函數(shù)的最大值。

查看答案和解析>>

一、選擇題(每小題5分,共40分)

1.D    2.B    3.B    4.B    5.C     6.D    7.C     8.A

解:5.C  ,相切時(shí)的斜率為

6.D 

7.C  

       

8.A  原方程可化為[(3x+y)2009+(3x+y)]+(x2009+x)=0,設(shè)函數(shù)f(x)=x2009+x,

顯然該函數(shù)為奇函數(shù),且在R上是增函數(shù),則原方程為f(3x+y)+f(x)=0,

即f(3x+y)=-f(x)= f(-x),所以3x+y=-x,故4x+y=0

二、填空題(每小題5分,共30分)

9.

10.  位執(zhí)“一般”對應(yīng)位“不喜歡”,即“一般”是“不喜歡”的倍,而他們的差為 人,即“一般”有人,“不喜歡”的有人,且“喜歡”是“不喜歡”的5倍,即人.

11.-192

12.;根據(jù)題中的信息,可以把左邊的式子歸納為從個球(n個白球,k個黑球中取出m個球,可分為:沒有黑球,一個黑球,……,k個黑球等類,故有種取法.

13.5;    14、;

15.16; 由可化為xy =8+x+y,  x,y均為正實(shí)數(shù)

 xy =8+x+y

(當(dāng)且僅當(dāng)x=y等號成立)即xy-2-8可解得,

即xy16故xy的最小值為16.

三、解答題:(本大題共6小題,共80分,解答應(yīng)寫出文字說明,證明過程或演算步驟)。

16、(本題滿分12分)

解:Ⅰ)在中,

cosA=,又A是的內(nèi)角,∴A=                  …………6分

(Ⅱ)由正弦定理,又,故  …………8分

即:  故是以為直角的直角三角形     …………10分

又∵A=, ∴B=                                                …………12分

17.(本題滿分14分)

解:(I)所求x的可能取值為6、7、8、9                         …………1分

           

…………7分  

(II)

         ∴線路通過信息量的數(shù)學(xué)期望

          EX        ……13分

答:(I)線路信息暢通的概率是. (II)線路通過信息量的數(shù)學(xué)期望是……14分

18.(本題滿分14分)

解:(Ⅰ)建立如圖所示的空間直角坐標(biāo)系,   ……1分

      <dfn id="ci67o"></dfn>
      <fieldset id="ci67o"><object id="ci67o"><strong id="ci67o"></strong></object></fieldset>
      <button id="ci67o"></button>

      1. 、、

        、

        從而  ……3分

        設(shè)的夾角為,則

         ……6分

         ∴所成角的余弦值為    ……7分

        (Ⅱ)由于點(diǎn)在側(cè)面內(nèi),故可設(shè)點(diǎn)坐標(biāo)為,

         則,                         ……9分

        可得,

         

         ∴                             ……13分

        ∴在側(cè)面內(nèi)所求點(diǎn)的坐標(biāo)為   ………14分

        (其它解法參照給分)

        19.(本小題滿分14分)

        解:(1)由已知得 化簡得         …………2分

            即有唯一解

             所以△ 即    ……5分

        消去,

        解得                          ……7分

           (2)

                                 ……9分

                                      ……10分

        上為單調(diào)函數(shù),則上恒有成立。……12分

        的圖象是開口向下的拋物線,所以△=122+24(-2-2m)≤0,

        解得   即所求的范圍是[2,+            ……14分

        20.(本小題滿分14分)

        解:(1)由已知    公差  ……1分

                               ……2分

                        …………4分

        由已知           ……5分  所以公比

                     ………7分

         (2)設(shè)

                                         ………8分

        所以當(dāng)時(shí),是增函數(shù)。                           ………10分

        ,所以當(dāng)時(shí),                   ………12分

        ,                              ………13分

        所以不存在,使。                           ………14分

        21.(14分)解:(1)設(shè)C(x,y),∵M(jìn)點(diǎn)是ΔABC的重心,∴M(,).

        又||=||且向量共線,∴N在邊AB的中垂線上,∴N(0,).

        而||=||,∴=,   即x2 =a2. ……6分

        (2)設(shè)E(x1,y1),F(xiàn)(x2,y2),由題意知直線L斜率存在,可設(shè)L方程為y=kx+a,…7分

        代入x2 =a2得 (3-k2)x2-2akx-4a2=0

        ∴Δ=4a2k2+16a2(3-k2)>0,即k2<4.∴k2-3<1,

        >4或<0.                     ……9分

        而x1,x2是方程的兩根,∴x1+x2=,x1x2=.            ……10分

        ?=(x1,y1-a)?(x2,y2-a)= x1x2+kx1?kx2=(1+k2) x1x2=

        =4a2(1+)∈(-∞,4a2)∪(20a2,+∞).

        ?的取值范圍為(-∞,4a2)∪(20a2,+∞).               ……14分

         

         


        同步練習(xí)冊答案