20. 查看更多

 

題目列表(包括答案和解析)

本題滿(mǎn)分14分)已知函數(shù),,其中.w.w.w.k.s.5.u.c.o.m    

   (I)設(shè)函數(shù).若在區(qū)間上不單調(diào),求的取值范圍;

   (II)設(shè)函數(shù)  是否存在,對(duì)任意給定的非零實(shí)數(shù),存在惟一的非零實(shí)數(shù)),使得成立?若存在,求的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

(本題滿(mǎn)分14分) 若F1、F2為雙曲線(xiàn)的左、右焦點(diǎn),O為坐標(biāo)原點(diǎn),P在雙曲線(xiàn)左支上,M在右準(zhǔn)線(xiàn)上,且滿(mǎn)足(Ⅰ)求此雙曲線(xiàn)的離心率;(Ⅱ)若此雙曲線(xiàn)過(guò)點(diǎn),求雙曲線(xiàn)方程;(Ⅲ)設(shè)(Ⅱ)中雙曲線(xiàn)的虛軸端點(diǎn)為B1,B2(B1在y軸正半軸上),求B2作直線(xiàn)AB與雙曲線(xiàn)交于A、B兩點(diǎn),求時(shí),直線(xiàn)AB的方程.

查看答案和解析>>

(本題滿(mǎn)分14分)某單位用2160萬(wàn)元購(gòu)得一塊空地,計(jì)劃在該地塊上建造一棟至少10層,每層2000平方米的樓房。經(jīng)測(cè)算,如果將樓房建為x(x ≥ 10)層,則每平方米的平均建筑費(fèi)用為560 + 48x(單位:元).⑴寫(xiě)出樓房平均綜合費(fèi)用y關(guān)于建造層數(shù)x的函數(shù)關(guān)系式;

⑵該樓房應(yīng)建造多少層時(shí),可使樓房每平方米的平均綜合費(fèi)用最少?最少值是多少?

(注:平均綜合費(fèi)用 = 平均建筑費(fèi)用 + 平均購(gòu)地費(fèi)用,平均購(gòu)地費(fèi)用 = )

查看答案和解析>>

(本題滿(mǎn)分14分)如圖,已知二次函數(shù),直線(xiàn)lx = 2,直線(xiàn)ly = 3tx(其中1< t < 1,t為常數(shù));若直線(xiàn)l、l與函數(shù)的圖象所圍成的封閉圖形如圖(5)陰影所示.(1)求y = ;(2)求陰影面積s關(guān)于t的函數(shù)s = u(t)的解析式;(3)若過(guò)點(diǎn)A(1,m)(m≠4)可作曲線(xiàn)s=u(t)(tR)的三條切線(xiàn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

(本題滿(mǎn)分14分)

在梯形ABCD中,AB⊥AD,AB∥CD,A、B是兩個(gè)定點(diǎn),其坐

標(biāo)分別為(0,-1)、(0,1),C、D是兩個(gè)動(dòng)點(diǎn),且滿(mǎn)足|CD|=|BC|.

(1)求動(dòng)點(diǎn)C的軌跡E的方程;

(2)試探究在軌跡E上是否存在一點(diǎn)P?使得P到直線(xiàn)y=x-2的

距離最短;

(3)設(shè)軌跡E與直線(xiàn)所圍成的圖形的

面積為S,試求S的最大值。

其它解法請(qǐng)參照給分。

查看答案和解析>>

一、選擇題(每小題5分,共40分)

1.D    2.B    3.B    4.B    5.C     6.D    7.C     8.A

解:5.C  ,相切時(shí)的斜率為

6.D 

7.C  

       

8.A  原方程可化為[(3x+y)2009+(3x+y)]+(x2009+x)=0,設(shè)函數(shù)f(x)=x2009+x,

顯然該函數(shù)為奇函數(shù),且在R上是增函數(shù),則原方程為f(3x+y)+f(x)=0,

即f(3x+y)=-f(x)= f(-x),所以3x+y=-x,故4x+y=0

二、填空題(每小題5分,共30分)

9.

10.  位執(zhí)“一般”對(duì)應(yīng)位“不喜歡”,即“一般”是“不喜歡”的倍,而他們的差為 人,即“一般”有人,“不喜歡”的有人,且“喜歡”是“不喜歡”的5倍,即人.

11.-192

12.;根據(jù)題中的信息,可以把左邊的式子歸納為從個(gè)球(n個(gè)白球,k個(gè)黑球中取出m個(gè)球,可分為:沒(méi)有黑球,一個(gè)黑球,……,k個(gè)黑球等類(lèi),故有種取法.

13.5;    14、;

15.16; 由可化為xy =8+x+y,  x,y均為正實(shí)數(shù)

 xy =8+x+y

(當(dāng)且僅當(dāng)x=y等號(hào)成立)即xy-2-8可解得,

即xy16故xy的最小值為16.

三、解答題:(本大題共6小題,共80分,解答應(yīng)寫(xiě)出文字說(shuō)明,證明過(guò)程或演算步驟)。

16、(本題滿(mǎn)分12分)

解:Ⅰ)在中,

cosA=,又A是的內(nèi)角,∴A=                  …………6分

(Ⅱ)由正弦定理,又,故  …………8分

即:  故是以為直角的直角三角形     …………10分

又∵A=, ∴B=                                                …………12分

17.(本題滿(mǎn)分14分)

解:(I)所求x的可能取值為6、7、8、9                         …………1分

           

…………7分  

(II)

         ∴線(xiàn)路通過(guò)信息量的數(shù)學(xué)期望

          EX        ……13分

答:(I)線(xiàn)路信息暢通的概率是. (II)線(xiàn)路通過(guò)信息量的數(shù)學(xué)期望是……14分

18.(本題滿(mǎn)分14分)

解:(Ⅰ)建立如圖所示的空間直角坐標(biāo)系,   ……1分

<strike id="6bl8s"><dl id="6bl8s"></dl></strike>
<fieldset id="6bl8s"></fieldset>

<samp id="6bl8s"></samp>

      1. 、、、

        、

        從而  ……3分

        設(shè)的夾角為,則

         ……6分

         ∴所成角的余弦值為    ……7分

        (Ⅱ)由于點(diǎn)在側(cè)面內(nèi),故可設(shè)點(diǎn)坐標(biāo)為,

         則,                         ……9分

        可得,

         

         ∴                             ……13分

        ∴在側(cè)面內(nèi)所求點(diǎn)的坐標(biāo)為   ………14分

        (其它解法參照給分)

        19.(本小題滿(mǎn)分14分)

        解:(1)由已知得 化簡(jiǎn)得         …………2分

            即有唯一解

             所以△ 即    ……5分

        消去,

        解得                          ……7分

           (2)

                                 ……9分

                                      ……10分

        上為單調(diào)函數(shù),則上恒有成立。……12分

        的圖象是開(kāi)口向下的拋物線(xiàn),所以△=122+24(-2-2m)≤0,

        解得   即所求的范圍是[2,+            ……14分

        20.(本小題滿(mǎn)分14分)

        解:(1)由已知    公差  ……1分

                               ……2分

                        …………4分

        由已知           ……5分  所以公比

                     ………7分

         (2)設(shè)

                                         ………8分

        所以當(dāng)時(shí),是增函數(shù)。                           ………10分

        ,所以當(dāng)時(shí),                   ………12分

        ,                              ………13分

        所以不存在,使。                           ………14分

        21.(14分)解:(1)設(shè)C(x,y),∵M(jìn)點(diǎn)是ΔABC的重心,∴M(,).

        又||=||且向量共線(xiàn),∴N在邊AB的中垂線(xiàn)上,∴N(0,).

        而||=||,∴=,   即x2 =a2. ……6分

        (2)設(shè)E(x1,y1),F(xiàn)(x2,y2),由題意知直線(xiàn)L斜率存在,可設(shè)L方程為y=kx+a,…7分

        代入x2 =a2得 (3-k2)x2-2akx-4a2=0

        ∴Δ=4a2k2+16a2(3-k2)>0,即k2<4.∴k2-3<1,

        >4或<0.                     ……9分

        而x1,x2是方程的兩根,∴x1+x2=,x1x2=.            ……10分

        ?=(x1,y1-a)?(x2,y2-a)= x1x2+kx1?kx2=(1+k2) x1x2=

        =4a2(1+)∈(-∞,4a2)∪(20a2,+∞).

        ?的取值范圍為(-∞,4a2)∪(20a2,+∞).               ……14分

         

         


        同步練習(xí)冊(cè)答案