題目列表(包括答案和解析)
1 |
1×4 |
1 |
4×7 |
1 |
7×10 |
1 |
(3n-2)(3n+1) |
1 |
1×2 |
1 |
2×3 |
1 |
3×4 |
1 |
9×10 |
.(本小題滿分12分)第16屆亞運(yùn)會(huì)將于2010年11月在廣州市舉行,射擊隊(duì)運(yùn)動(dòng)員們正在積極備戰(zhàn). 若某運(yùn)動(dòng)員每次射擊成績?yōu)?0環(huán)的概率為. 求該運(yùn)動(dòng)員在5次射擊中,(1)恰有3次射擊成績?yōu)?0環(huán)的概率;
(2)至少有3次射擊成績?yōu)?0環(huán)的概率;
(3)記“射擊成績?yōu)?0環(huán)的次數(shù)”為,求.(結(jié)果用分?jǐn)?shù)表示)
.若一個(gè)等差數(shù)列前3項(xiàng)的和為34,最后3項(xiàng)的和為146,且所有項(xiàng)的和為390,
則這個(gè)數(shù)列有 ( )
A.13項(xiàng) B.12項(xiàng) C.11項(xiàng) D.10項(xiàng)
.表1中數(shù)陣稱為“森德拉姆篩”,其特點(diǎn)是每行每列都是等差數(shù)列,則表中數(shù)字206共出現(xiàn) 次。
2 |
3 |
4 |
5 |
6 |
7 |
… |
3 |
5 |
7 |
9 |
11 |
13 |
… |
4 |
7 |
10 |
13 |
16 |
19 |
… |
5 |
9 |
13 |
17 |
21 |
25 |
… |
6 |
11 |
16 |
21 |
26 |
31 |
… |
7 |
13 |
19 |
25 |
31 |
37 |
… |
… |
… |
… |
… |
… |
… |
… |
一、選擇題(每小題5分,共40分)
1.D 2.B 3.B 4.B 5.C 6.D 7.C 8.A
解:5.C ,相切時(shí)的斜率為
6.D
7.C
8.A 原方程可化為[(3x+y)2009+(3x+y)]+(x2009+x)=0,設(shè)函數(shù)f(x)=x2009+x,
顯然該函數(shù)為奇函數(shù),且在R上是增函數(shù),則原方程為f(3x+y)+f(x)=0,
即f(3x+y)=-f(x)= f(-x),所以3x+y=-x,故4x+y=0
二、填空題(每小題5分,共30分)
9.
10. 位執(zhí)“一般”對應(yīng)位“不喜歡”,即“一般”是“不喜歡”的倍,而他們的差為 人,即“一般”有人,“不喜歡”的有人,且“喜歡”是“不喜歡”的5倍,即人.
11.-192
12.;根據(jù)題中的信息,可以把左邊的式子歸納為從個(gè)球(n個(gè)白球,k個(gè)黑球中取出m個(gè)球,可分為:沒有黑球,一個(gè)黑球,……,k個(gè)黑球等類,故有種取法.
13.5; 14、;
15.16; 由可化為xy =8+x+y, x,y均為正實(shí)數(shù)
xy =8+x+y
(當(dāng)且僅當(dāng)x=y等號(hào)成立)即xy-2-8可解得,
即xy16故xy的最小值為16.
三、解答題:(本大題共6小題,共80分,解答應(yīng)寫出文字說明,證明過程或演算步驟)。
16、(本題滿分12分)
解:Ⅰ)在中, 且
cosA=,又A是的內(nèi)角,∴A= …………6分
(Ⅱ)由正弦定理,又,故 …………8分
即: 故是以為直角的直角三角形 …………10分
又∵A=, ∴B= …………12分
17.(本題滿分14分)
解:(I)所求x的可能取值為6、7、8、9 …………1分
…………7分
(II)
∴線路通過信息量的數(shù)學(xué)期望
EX ……13分
答:(I)線路信息暢通的概率是. (II)線路通過信息量的數(shù)學(xué)期望是.……14分
18.(本題滿分14分)
解:(Ⅰ)建立如圖所示的空間直角坐標(biāo)系, ……1分
|