題目列表(包括答案和解析)
已知直線a、b、c和平面a、β,下列命題:①若a∥b,a∥a則a∥b;②若a^b,a^a,b^b,則a^b;③若a^b,a^b,則a∥a;④若a∥a,a^b,則a^b.其中正確的是( )
A.② B.①② C.①③ D.④
已知直三棱柱中, , , 是和的交點(diǎn), 若.
(1)求的長(zhǎng); (2)求點(diǎn)到平面的距離;
(3)求二面角的平面角的正弦值的大小.
【解析】本試題主要考查了距離和角的求解運(yùn)用。第一問中,利用ACCA為正方形, AC=3
第二問中,利用面BBCC內(nèi)作CDBC, 則CD就是點(diǎn)C平面ABC的距離CD=,第三問中,利用三垂線定理作二面角的平面角,然后利用直角三角形求解得到其正弦值為
解法一: (1)連AC交AC于E, 易證ACCA為正方形, AC=3 …………… 5分
(2)在面BBCC內(nèi)作CDBC, 則CD就是點(diǎn)C平面ABC的距離CD= … 8分
(3) 易得AC面ACB, 過E作EHAB于H, 連HC, 則HCAB
CHE為二面角C-AB-C的平面角. ……… 9分
sinCHE=二面角C-AB-C的平面角的正弦大小為 ……… 12分
解法二: (1)分別以直線CB、CC、CA為x、y為軸建立空間直角坐標(biāo)系, 設(shè)|CA|=h, 則C(0, 0, 0), B(4, 0, 0), B(4, -3, 0), C(0, -3, 0), A(0, 0, h), A(0, -3, h), G(2, -, -) ……………………… 3分
=(2, -, -), =(0, -3, -h(huán)) ……… 4分
·=0, h=3
(2)設(shè)平面ABC得法向量=(a, b, c),則可求得=(3, 4, 0) (令a=3)
點(diǎn)A到平面ABC的距離為H=||=……… 8分
(3) 設(shè)平面ABC的法向量為=(x, y, z),則可求得=(0, 1, 1) (令z=1)
二面角C-AB-C的大小滿足cos== ……… 11分
二面角C-AB-C的平面角的正弦大小為
一、選擇題:
1.B 2.C 3.B 4.A 5.A 6.B 7.D 8.D 9.C 10.D 11.C 12.B
二、填空題:
13.{2,3,4} 14. 15. 16.①②④
三.17解:解: 所在的直線的斜率為=,………………(2分)
設(shè)直線的斜率為 …………………………………………………(4分)
∴直線的方程為:, …………………………………………………(6分)
即 ………………………………………………………………………(8分)
直線與坐標(biāo)軸的交點(diǎn)坐標(biāo)為…………………………………………(10分)
∴直線與坐標(biāo)軸圍成的三角形的面積……………………(12分)
18.解:(1)∵AE∶EB=AH∶HD,∴EH//BD,CF∶FB=CG∶GD,
∴FG//BD,∴EH//FG, …………………………………………………(2分)
∵,∴,
同理,∴EH=FG
∴EHFG
故四邊形EFGH為平行四邊形. …………………(6分)
(2) ∵AE∶EB= CF∶FB,∴EF//AC,
又∵AC⊥BD,∴∠FEH是AC與BD所成的角,………………………(10分)
∴∠FEH=,從而EFGH為矩形,∴EG=FH. ………………………………(12分)
19.解:解:(1)直觀圖如圖:
…………………………………………………(6分)
(2)三棱錐底面是斜邊為
其體積為V= ………………………………(12分)
20.解: (1)設(shè)每輛車的月租金定為x元,則租賃公司的月收益為:
=(100-)(x-150)-×50,…………………(4分)
整理得:=-+162x-21000 …………………………………………………(6分)
(2)每輛車的月租金為元…………………………………(8分)
時(shí),元
當(dāng)租出了88輛車時(shí),租賃公司的月收益303000元. ………………………………(12分)
21.解:點(diǎn)的坐標(biāo)為∠的平分線與邊上的高所在直線的交點(diǎn)的坐標(biāo),即
,解得,點(diǎn)的坐標(biāo)為 …………………………(4分)
直線的方程為,即: ………………………(6分)
點(diǎn)關(guān)于的對(duì)稱點(diǎn)的坐標(biāo)為,則
,解得,即………………………………………(8分)
直線的方程為: ……………………………………………………(10分)
的坐標(biāo)是與交點(diǎn)的坐標(biāo):
,解得,所以的坐標(biāo) …………………………(12分)
22.解:(1)∵ AB⊥平面BCD 平面ABC⊥平面BCD CD⊥平面ABC
AB 平面ABC ∠BCD=900
又∵EF∥CD ……………………………(4分)
EF⊥平面ABC, ∴平面BEF⊥平面ABC………………(6分)
(2)平面BEF⊥平面ACD
AC⊥EF AC⊥平面BEF, ∴AC⊥BE………(8分)
平面BEF∩平面ACD=EF
在Rt△BCD中,BD=,
在Rt△ABD中,AB=?tan60°= ……………………………………(10分)
在Rt△ABC中,AC= , ∴………………(12分)
∴ ,
即時(shí),平面DEF⊥平面ACD. ……………………………………(14分)
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com