試用表示; 查看更多

 

題目列表(包括答案和解析)

(Ⅰ) 已知a>0,b>0,化簡(2a
2
3
b
1
2
)(-6a
1
2
b
1
3
)÷(-3a
1
6
b
5
6
)
;
(Ⅱ) 已知lg2=a,lg3=b,試用a,b表示log125.

查看答案和解析>>

(Ⅰ)已知lg2=a,lg3=b,試用a,b表示log215;
(Ⅱ)化簡求值:
6
1
4
+
[
3]82+0.027-
2
3
×(-
1
3
)-2

查看答案和解析>>

(Ⅰ)設
e1
 , 
e2
為兩個不共線的向量,
a
=-
e1
+3
e2
 , 
b
=4
e1
+2
e2
 , 
c
=-3
e1
+12
e2
,試用
b
 , 
c
為基底表示向量
a
;
(Ⅱ)已知向量
a
=( 3 , 2 ) , 
b
=( -1 , 2 ) , 
c
=( 4 , 1 )
,當k為何值時,
a
+k
c
 )
( 2
b
-
a
 )
?平行時它們是同向還是反向?

查看答案和解析>>

試用適當?shù)姆椒ū硎鞠铝屑?

(1)24的正約數(shù);

(2)數(shù)軸上與原點的距離小于1的所有點;

(3)平面直角坐標系中,Ⅰ、Ⅲ象限的角平分線上的所有點;

(4)所有非零偶數(shù);

(5)所有被3除余數(shù)是1的數(shù).

查看答案和解析>>

(Ⅰ)已知lg2=a,lg3=b,試用a,b表示log215;
(Ⅱ)化簡求值:數(shù)學公式

查看答案和解析>>

選擇題

題號

1

2

3

4

5

6

7

8

9

10

答案

C

B

A

A

A

B

C

D

C

A

填空題

11.     12.   13.-18   14.(2,3)     15.①②⑤

16. 解(1)由題意得, ………2分 ; 從而, ………4分

,所以   ………………………………………6分

(2)由(1)得………………………8分

因為,所以,所以當時,取得最小值為1…10分

的單調(diào)遞減區(qū)間為          ………………………………12分

17. 令的值域為M.

。á瘢┊的定義域為R,有.

    故    …………………………6分

(Ⅱ)當的值域為R,有

   故 或

   ∴   ………………………………………………12分

18. 建立如圖所示的直角坐標系,則E(30,0),F(xiàn)(0,20)。

  ∴線段的方程是………3分

 

  在線段上取點,作PQ⊥BC于點Q,PR⊥CD于點R,

設矩形PQCR的面積為s,則s=|PQ|?|PR|=(100-)(80-).…………6分

又∵ ,∴,

!10分

∴當5m時,s有最大值,此時.

故當矩形廣場的兩邊在BC、CD上,一個頂點在線段EF上,

且這個頂點分EF成5:1時,廣場的面積最大。        …………12分

 

19.解: (1) 由題知:  , 解得 , 故. ………2分

(2)  , 

,

滿足上式.   所以……………7分

(3) 若的等差中項, 則,

從而,    得

因為的減函數(shù), 所以

, 即時, 的增大而減小, 此時最小值為;

, 即時, 的增大而增大, 此時最小值為

, 所以,

即數(shù)列最小, 且.   …………12分

20.解:(1)三個函數(shù)的最小值依次為,,

,得 

,

故方程的兩根是

,即

∴  .………………6分

(2)①依題意是方程的根,

故有,,

且△,得

……………9分

 ;得,

由(1)知,故

∴  ,

∴  .………………………13分

21.(Ⅰ)設AB:x=my+2,  A(x1,y1) ,B(x2,y2)

     將x=my+2代入,消x整理,得:

     (m2+2)y2+4my-4=0

    而=

     ==

 取“=”時,顯然m=0,此時AB:x=2……………………6分

(Ⅱ)(?)顯然是橢圓的右焦點,離心率

         且

         作  點A在橢圓上

       

        

      ……………10分

 

(?)同理 ,由

有  =2

解得:=,故

 所以直線AB: y=(x-2)

即直線AB的方程為………14分

 

 

 

 


同步練習冊答案