分析 可分別設(shè)OA,OB所在的直線方程為:和()由 解得A .同理可得B(以-代替其中的k),直線AB的方程:=.另y=0解得與X軸交于一定點[補充習(xí)題] 查看更多

 

題目列表(包括答案和解析)

在以O(shè)為坐標(biāo)原點的直角坐標(biāo)系中,
OA
AB
,點A(4,-3),B點在第一象限且到x軸的距離為5.
(1) 求向量
AB
的坐標(biāo)及OB所在的直線方程;
(2) 求圓(x-3)2+(y+1)2=10關(guān)于直線OB對稱的圓的方程;
(3) 設(shè)直線l
AB
為方向向量且過(0,a)點,問是否存在實數(shù)a,使得橢圓
x2
16
+y2=1上有兩個不同的點關(guān)于直線l對稱.若不存在,請說明理由; 存在請求出實數(shù)a的取值范圍.

查看答案和解析>>

平面直角坐標(biāo)系中,三個頂點的坐標(biāo)為A(a,0),B(0,b),C(0,c),點D(d,0)在線段OA上(異于端點),設(shè)a,b,c,d均為非零實數(shù),直線BD交AC于點E,則OE所在的直線方程為        _      

 

查看答案和解析>>

在以O(shè)為坐標(biāo)原點的直角坐標(biāo)系中,,點A(4,-3),B點在第一象限且到x軸的距離為5.
(1) 求向量的坐標(biāo)及OB所在的直線方程;
(2) 求圓(x-3)2+(y+1)2=10關(guān)于直線OB對稱的圓的方程;
(3) 設(shè)直線l為方向向量且過(0,a)點,問是否存在實數(shù)a,使得橢圓+y2=1上有兩個不同的點關(guān)于直線l對稱.若不存在,請說明理由; 存在請求出實數(shù)a的取值范圍.

查看答案和解析>>

設(shè)拋物線y2=2px(p>0),Rt△AOB內(nèi)接于拋物線,O為坐標(biāo)原點,AO⊥BO,AO所在的直線方程為y=2x,|AB|=5
13
,求拋物線方程.

查看答案和解析>>

已知△ABC中,BC邊上的高所在的直線方程為x-2y+1=0,∠A的角平分線所在的直線方程為y=0,點C的坐標(biāo)為(1,2).
(Ⅰ)求點A和點B的坐標(biāo);
(Ⅱ)又過點C作直線l與x軸、y軸的正半軸分別交于點M,N,求△MON的面積最小值及此時直線l的方程.

查看答案和解析>>


同步練習(xí)冊答案