S△OBC=S梯形BDEC+ S△OBDS△OCE 查看更多

 

題目列表(包括答案和解析)

(2007•海淀區(qū)二模)例.如圖①,平面直角坐標系xOy中有點B(2,3)和C(5,4),求△OBC的面積.
解:過點B作BD⊥x軸于D,過點C作CE⊥x軸于E.依題意,可得
S△OBC=S梯形BDEC+S△OBD-S△OCE
=
1
2
(BD+CE)(OE-OD)+
1
2
OD•BD-
1
2
•OE•CE

=
1
2
×(3+4)×(5-2)+
1
2
×2×3-
1
2
×5×4=3.5.
∴△OBC的面積為3.5.
(1)如圖②,若B(x1,y1)、C(x2,y2)均為第一象限的點,O、B、C三點不在同一條直線上.仿照例題的解法,求△OBC的面積(用含x1、x2、y1、y2的代數(shù)式表示);
(2)如圖③,若三個點的坐標分別為A(2,5),B(7,7),C(9,1),求四邊形OABC的面積.

查看答案和解析>>

例.如圖①,平面直角坐標系xOy中有點B(2,3)和C(5,4),求△OBC的面積.
解:過點B作BD⊥x軸于D,過點C作CE⊥x軸于E.依題意,可得
S△OBC=S梯形BDEC+S△OBD-S△OCE
=
=×(3+4)×(5-2)+×2×3-×5×4=3.5.
∴△OBC的面積為3.5.
(1)如圖②,若B(x1,y1)、C(x2,y2)均為第一象限的點,O、B、C三點不在同一條直線上.仿照例題的解法,求△OBC的面積(用含x1、x2、y1、y2的代數(shù)式表示);
(2)如圖③,若三個點的坐標分別為A(2,5),B(7,7),C(9,1),求四邊形OABC的面積.

查看答案和解析>>

例.如圖①,平面直角坐標系xOy中有點B(2,3)和C(5,4),求△OBC的面積.
解:過點B作BD⊥x軸于D,過點C作CE⊥x軸于E.依題意,可得
S△OBC=S梯形BDEC+S△OBD-S△OCE
=數(shù)學公式
=數(shù)學公式×(3+4)×(5-2)+數(shù)學公式×2×3-數(shù)學公式×5×4=3.5.
∴△OBC的面積為3.5.
(1)如圖②,若B(x1,y1)、C(x2,y2)均為第一象限的點,O、B、C三點不在同一條直線上.仿照例題的解法,求△OBC的面積(用含x1、x2、y1、y2的代數(shù)式表示);
(2)如圖③,若三個點的坐標分別為A(2,5),B(7,7),C(9,1),求四邊形OABC的面積.

查看答案和解析>>

例.如圖①,平面直角坐標系xOy中有點B(2,3)和C(5,4),求△OBC的面積.
解:過點B作BD⊥x軸于D,過點C作CE⊥x軸于E.依題意,可得
S△OBC=S梯形BDEC+S△OBD-S△OCE
=
=×(3+4)×(5-2)+×2×3-×5×4=3.5.
∴△OBC的面積為3.5.
(1)如圖②,若B(x1,y1)、C(x2,y2)均為第一象限的點,O、B、C三點不在同一條直線上.仿照例題的解法,求△OBC的面積(用含x1、x2、y1、y2的代數(shù)式表示);
(2)如圖③,若三個點的坐標分別為A(2,5),B(7,7),C(9,1),求四邊形OABC的面積.

查看答案和解析>>

如圖,在△ABC中,DE∥BC,BD:AD=1:2,那么△ADE與梯形BDEC的面積之比是(  )

查看答案和解析>>


同步練習冊答案