26.已知:如圖.在△ABC中.∠B=22.5°.AD是高.AB的垂直平分線交BC于點(diǎn)M.交AB于點(diǎn)N.ME⊥AC.垂足為點(diǎn)E.并與AD交于點(diǎn)F求證:DC=DF 查看更多

 

題目列表(包括答案和解析)

(2006•佛山)在數(shù)學(xué)學(xué)習(xí)過(guò)程中,通常是利用已有的知識(shí)與經(jīng)驗(yàn),通過(guò)對(duì)研究對(duì)象進(jìn)行觀察、實(shí)驗(yàn)、推理、抽象概括,發(fā)現(xiàn)數(shù)學(xué)規(guī)律,揭示研究對(duì)象的本質(zhì)特征.
比如“同底數(shù)冪的乘法法則”的學(xué)習(xí)過(guò)程是利用有理數(shù)的乘方概念和乘法結(jié)合律,由“特殊”到“一般”進(jìn)行抽象概括的:
22×23=25,23×24=27,22×26=28,…?2m×2n=2m+n,…?am×an=am+n(m、n都是正整數(shù)).我們亦知:,,,…
(1)請(qǐng)你根據(jù)上面的材料歸納出a、b、c(a>b>0,c>0)之間的一個(gè)數(shù)學(xué)關(guān)系式;
(2)試用(1)中你歸納的數(shù)學(xué)關(guān)系式,解釋下面生活中的一個(gè)現(xiàn)象:“若m克糖水里含有n克糖,再加入k克糖(仍不飽和),則糖水更甜了”;
(3)如圖,在Rt△ABC中,∠C=90°,CB=a,CA=b,AD=BE=c(a>b),能否根據(jù)這個(gè)圖形提煉出與(1)中相同的關(guān)系式并給予證明.

查看答案和解析>>

(2006•佛山)在數(shù)學(xué)學(xué)習(xí)過(guò)程中,通常是利用已有的知識(shí)與經(jīng)驗(yàn),通過(guò)對(duì)研究對(duì)象進(jìn)行觀察、實(shí)驗(yàn)、推理、抽象概括,發(fā)現(xiàn)數(shù)學(xué)規(guī)律,揭示研究對(duì)象的本質(zhì)特征.
比如“同底數(shù)冪的乘法法則”的學(xué)習(xí)過(guò)程是利用有理數(shù)的乘方概念和乘法結(jié)合律,由“特殊”到“一般”進(jìn)行抽象概括的:
22×23=25,23×24=27,22×26=28,…?2m×2n=2m+n,…?am×an=am+n(m、n都是正整數(shù)).我們亦知:,,,…
(1)請(qǐng)你根據(jù)上面的材料歸納出a、b、c(a>b>0,c>0)之間的一個(gè)數(shù)學(xué)關(guān)系式;
(2)試用(1)中你歸納的數(shù)學(xué)關(guān)系式,解釋下面生活中的一個(gè)現(xiàn)象:“若m克糖水里含有n克糖,再加入k克糖(仍不飽和),則糖水更甜了”;
(3)如圖,在Rt△ABC中,∠C=90°,CB=a,CA=b,AD=BE=c(a>b),能否根據(jù)這個(gè)圖形提煉出與(1)中相同的關(guān)系式并給予證明.

查看答案和解析>>

(2006•佛山)在數(shù)學(xué)學(xué)習(xí)過(guò)程中,通常是利用已有的知識(shí)與經(jīng)驗(yàn),通過(guò)對(duì)研究對(duì)象進(jìn)行觀察、實(shí)驗(yàn)、推理、抽象概括,發(fā)現(xiàn)數(shù)學(xué)規(guī)律,揭示研究對(duì)象的本質(zhì)特征.
比如“同底數(shù)冪的乘法法則”的學(xué)習(xí)過(guò)程是利用有理數(shù)的乘方概念和乘法結(jié)合律,由“特殊”到“一般”進(jìn)行抽象概括的:
22×23=25,23×24=27,22×26=28,…?2m×2n=2m+n,…?am×an=am+n(m、n都是正整數(shù)).我們亦知:,,,,…
(1)請(qǐng)你根據(jù)上面的材料歸納出a、b、c(a>b>0,c>0)之間的一個(gè)數(shù)學(xué)關(guān)系式;
(2)試用(1)中你歸納的數(shù)學(xué)關(guān)系式,解釋下面生活中的一個(gè)現(xiàn)象:“若m克糖水里含有n克糖,再加入k克糖(仍不飽和),則糖水更甜了”;
(3)如圖,在Rt△ABC中,∠C=90°,CB=a,CA=b,AD=BE=c(a>b),能否根據(jù)這個(gè)圖形提煉出與(1)中相同的關(guān)系式并給予證明.

查看答案和解析>>

(2006•佛山)在數(shù)學(xué)學(xué)習(xí)過(guò)程中,通常是利用已有的知識(shí)與經(jīng)驗(yàn),通過(guò)對(duì)研究對(duì)象進(jìn)行觀察、實(shí)驗(yàn)、推理、抽象概括,發(fā)現(xiàn)數(shù)學(xué)規(guī)律,揭示研究對(duì)象的本質(zhì)特征.
比如“同底數(shù)冪的乘法法則”的學(xué)習(xí)過(guò)程是利用有理數(shù)的乘方概念和乘法結(jié)合律,由“特殊”到“一般”進(jìn)行抽象概括的:
22×23=25,23×24=27,22×26=28,…?2m×2n=2m+n,…?am×an=am+n(m、n都是正整數(shù)).我們亦知:,,,…
(1)請(qǐng)你根據(jù)上面的材料歸納出a、b、c(a>b>0,c>0)之間的一個(gè)數(shù)學(xué)關(guān)系式;
(2)試用(1)中你歸納的數(shù)學(xué)關(guān)系式,解釋下面生活中的一個(gè)現(xiàn)象:“若m克糖水里含有n克糖,再加入k克糖(仍不飽和),則糖水更甜了”;
(3)如圖,在Rt△ABC中,∠C=90°,CB=a,CA=b,AD=BE=c(a>b),能否根據(jù)這個(gè)圖形提煉出與(1)中相同的關(guān)系式并給予證明.

查看答案和解析>>

(2013•六盤水)(1)觀察發(fā)現(xiàn)
   如圖(1):若點(diǎn)A、B在直線m同側(cè),在直線m上找一點(diǎn)P,使AP+BP的值最小,做法如下:
   作點(diǎn)B關(guān)于直線m的對(duì)稱點(diǎn)B′,連接AB′,與直線m的交點(diǎn)就是所求的點(diǎn)P,線段AB′的長(zhǎng)度即為AP+BP的最小值.

   如圖(2):在等邊三角形ABC中,AB=2,點(diǎn)E是AB的中點(diǎn),AD是高,在AD上找一點(diǎn)P,使BP+PE的值最小,做法如下:
作點(diǎn)B關(guān)于AD的對(duì)稱點(diǎn),恰好與點(diǎn)C重合,連接CE交AD于一點(diǎn),則這點(diǎn)就是所求的點(diǎn)P,故BP+PE的最小值為
3
3

 (2)實(shí)踐運(yùn)用
   如圖(3):已知⊙O的直徑CD為2,
AC
的度數(shù)為60°,點(diǎn)B是
AC 
的中點(diǎn),在直徑CD上作出點(diǎn)P,使BP+AP的值最小,則BP+AP的值最小,則BP+AP的最小值為
2
2


  (3)拓展延伸
如圖(4):點(diǎn)P是四邊形ABCD內(nèi)一點(diǎn),分別在邊AB、BC上作出點(diǎn)M,點(diǎn)N,使PM+PN+MN的值最小,保留作圖痕跡,不寫作法.

查看答案和解析>>


同步練習(xí)冊(cè)答案