【題目】為了豐富同學(xué)們的課余生活,某學(xué)校舉行“親近大自然”戶外活動,現(xiàn)隨機(jī)抽取了部分學(xué)生進(jìn)行主題為“你最想去的景點(diǎn)是?”的問卷調(diào)查,要求學(xué)生只能從“A(植物園),B(花卉園),C(濕地公園),D(森林公園)”四個(gè)景點(diǎn)中選擇一項(xiàng),根據(jù)調(diào)查結(jié)果,繪制了如下兩幅不完整的統(tǒng)計(jì)圖.
請解答下列問題:
(1)本次調(diào)查的樣本容量是 ;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該學(xué)校共有3600名學(xué)生,試估計(jì)該校最想去濕地公園的學(xué)生人數(shù).
【答案】(1)60;(2)作圖見解析;(3)1380.
【解析】試題分析:(1)由A的人數(shù)及其人數(shù)占被調(diào)查人數(shù)的百分比可得;
(2)根據(jù)各項(xiàng)目人數(shù)之和等于總數(shù)可得C選項(xiàng)的人數(shù);
(3)用樣本中最想去濕地公園的學(xué)生人數(shù)占被調(diào)查人數(shù)的比例乘總?cè)藬?shù)即可.
試題解析:(1)本次調(diào)查的樣本容量是15÷25%=60;
(2)選擇C的人數(shù)為:60﹣15﹣10﹣12=23(人),
補(bǔ)全條形圖如圖:
(3)×3600=1380(人).
答:估計(jì)該校最想去濕地公園的學(xué)生人數(shù)約由1380人.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一段拋物線:y=-x(x-3)(0≤x≤3),記為C1,它與x軸交于點(diǎn)O,A1;
將C1繞點(diǎn)A1旋轉(zhuǎn)180°得C2,交x 軸于點(diǎn)A2;將C2繞點(diǎn)A2旋轉(zhuǎn)180°得C3,交x 軸于點(diǎn)A3;
……
如此進(jìn)行下去,直至得C13.
若P(1,m)在C1上,則m =_________.
若P(37,n)在第13段拋物線C13上,則n =_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理(解析)
提出問題:如圖1,在四邊形ABCD中,P是AD邊上任意一點(diǎn),△PBC與△ABC和△DBC的面積之間有什么關(guān)系?探究發(fā)現(xiàn):為了解決這個(gè)問題,我們可以先從一些簡單的、特殊的情形入手:
當(dāng)AP=AD時(shí)(如圖2):
∵AP=AD,△ABP和△ABD的高相等,
∴S△ABP=S△ABD,
∵PD=AD﹣AP=AD,△CDP和△CDA的高相等
∴S△CDP=S△CDA,
∴S△PBC=S四邊形ABCD﹣S△ABP﹣S△CDP=S四邊形ABCD﹣S△ABD﹣S△CDA,
=S四邊形ABCD﹣(S四邊形ABCD﹣S△DBC)﹣(S四邊形ABCD﹣S△ABC)=S△DBC+S△ABC.
(1)當(dāng)AP=AD時(shí),探求S△PBC與S△ABC和S△DBC之間的關(guān)系式并證明;
(2)當(dāng)AP=AD時(shí),S△PBC與S△ABC和S△DBC之間的關(guān)系式為: ;
(3)一般地,當(dāng)AP=AD(n表示正整數(shù))時(shí),探求S△PBC與S△ABC和S△DBC之間的關(guān)系為: ;
(4)當(dāng)AP=AD(0≤≤1)時(shí),S△PBC與S△ABC和S△DBC之間的關(guān)系式為: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過矩形ABCD的對角線BD上一點(diǎn)K分別作矩形兩邊的平行線MN與PQ,那么圖中矩形AMKP的面積S1與矩形QCNK的面積S2的大小關(guān)系是S1_____S2;(填“>”或“<”或“=”)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,AC=4cm,BC=3cm,點(diǎn)P由B出發(fā)沿BA的方向向點(diǎn)A勻速運(yùn)動,速度為1cm/s,同時(shí)點(diǎn)Q由A出發(fā)沿AC的方向向點(diǎn)C勻速運(yùn)動,速度為2cm/s,連接PQ,設(shè)運(yùn)動的時(shí)間為t(s),其中0<t<2,解答下列問題:
(1)當(dāng)t為何值時(shí),以P、Q、A為頂點(diǎn)的三角形與△ABC相似?
(2)是否存在某一時(shí)刻t,線段PQ將△ABC的面積分成1:2兩部分?若存在,求出此時(shí)的t,若不存在,請說明理由;
(3)點(diǎn)P、Q在運(yùn)動的過程中,△CPQ能否成為等腰三角形?若能,請求出此時(shí)t的值,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“年冬季越野賽”在濱河學(xué)校操場舉行,某運(yùn)動員從起點(diǎn)學(xué)校東門出發(fā),途徑濕地公園,沿比賽路線跑回終點(diǎn)學(xué)校東門.沿該運(yùn)動員離開起點(diǎn)的路程(千米)與跑步時(shí)間(時(shí)間)之間的函數(shù)關(guān)系如圖所示,其中從起點(diǎn)到濕地公園的平均速度是千米/分鐘,用時(shí)分鐘,根據(jù)圖像提供的信息,解答下列問題:
()求圖中的值;
()組委會在距離起點(diǎn)千米處設(shè)立一個(gè)拍攝點(diǎn),該運(yùn)動員從第一次過點(diǎn)到第二次過點(diǎn)所用的時(shí)間為分鐘.
①求所在直線的函數(shù)解析式;
②該運(yùn)動員跑完全程用時(shí)多少分鐘?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】畫圖并填空:如圖,方格紙中每個(gè)小正方形的邊長都為1.在方格紙內(nèi)將△ABC經(jīng)過一次平移后得到△A′B′C′,圖中標(biāo)出了點(diǎn)B的對應(yīng)點(diǎn)B′.
(1)在給定方格紙中畫出平移后的△A′B′C′;
(2)畫出AB邊上的中線CD
(3)畫出BC邊上的高線AE
(4)點(diǎn)為方格紙上的格點(diǎn)(異于點(diǎn)),若,則圖中的格點(diǎn)共有 個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD的外側(cè),作等邊三角形ADE,連接BE,CE.
(1)求證:BE=CE.
(2)求∠BEC的度數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰直角三角形ABC中,D是AB的中點(diǎn),E,F分別是AC,BC.上的點(diǎn)(點(diǎn)E不與端點(diǎn)A,C重合),且連接EF并取EF的中點(diǎn)O,連接DO并延長至點(diǎn)G,使,連接DE,DF,GE,GF
(1)求證:四邊形EDFG是正方形;
(2)直接寫出當(dāng)點(diǎn)E在什么位置時(shí),四邊形EDFG的面積最小?最小值是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com