【題目】為了清洗水箱,需先放掉水箱內(nèi)原有的存水,如圖是水箱剩余水量y(升)隨放水時(shí)間x(分)變化的圖象.

1)求y關(guān)于x的函數(shù)表達(dá)式,并確定自變量x的取值范圍;

2)若800打開(kāi)放水龍頭,估計(jì)855910(包括855910)水箱內(nèi)的剩水量(即y的取值范圍);

3)當(dāng)水箱中存水少于10升時(shí),放水時(shí)間至少超過(guò)多少分鐘?

【答案】1y=-2x+3000x150);(2160y190;(3)至少超過(guò)145min;

【解析】

1)根據(jù)函數(shù)圖象中的數(shù)據(jù)可以求得y關(guān)于x的函數(shù)表達(dá)式,并寫出自變量x的取值范圍;

2)根據(jù)題意和(1)中的函數(shù)關(guān)系式可以求得y的取值范圍;

3)根據(jù)題意可以得關(guān)于x的不等式,從而可以解答本題.

設(shè)函數(shù)表達(dá)式為

時(shí),;把時(shí),代入,得

解得

,得

∴自變量的取值范圍是

(2)∵當(dāng)時(shí),

當(dāng)時(shí),

∴水箱內(nèi)的剩余水量160y190

(3)由,得

即當(dāng)水箱中存水少于10升時(shí),放水時(shí)間至少超過(guò)145分鐘

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+3 的圖象與x軸分別交于A(1,0),B(3,0)兩點(diǎn),與y軸交于點(diǎn)C

(1)求此二次函數(shù)解析式;

(2)點(diǎn)D為拋物線的頂點(diǎn),試判斷△BCD的形狀,并說(shuō)明理由;

(3)將直線BC向上平移t(t>0)個(gè)單位,平移后的直線與拋物線交于M,N兩點(diǎn)(點(diǎn)M在y軸的右側(cè)),當(dāng)△AMN為直角三角形時(shí),求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正比例函數(shù)的圖象與反比例函數(shù)的圖象交于兩點(diǎn).是第一象限內(nèi)反比例函數(shù)圖象上一點(diǎn),過(guò)點(diǎn)軸的平行線,交直線于點(diǎn),連接,若的面積為,則點(diǎn)的坐標(biāo)為_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo)系xOy中,矩形OABC的頂點(diǎn)A、C分別在x軸和y軸正半軸上,點(diǎn)B的坐標(biāo)是(5,2),點(diǎn)PCB邊上一動(dòng)點(diǎn)(不與點(diǎn)C、點(diǎn)B重合),連結(jié)OPAP,過(guò)點(diǎn)O作射線OEAP的延長(zhǎng)線于點(diǎn)E,交CB邊于點(diǎn)M,且∠AOP=COM,令CP=xMP=y

1)求yx的函數(shù)關(guān)系式,并寫出x的取值范圍;

2)當(dāng)x為何值時(shí),OPAP?

3)在點(diǎn)P的運(yùn)動(dòng)過(guò)程中,是否存在x,使△OCM的面積與△ABP的面積之和等于△EMP的面積?若存在,請(qǐng)求x的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將矩形紙片ABCD的四個(gè)角向內(nèi)折起,恰好拼成一個(gè)無(wú)縫隙,無(wú)重疊的四邊形EFGH,設(shè)ABa,BCb,若AH1,則(  )

A.a24b4B.a24b+4C.a2b1D.a2b+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果一個(gè)四邊形有且只有三個(gè)頂點(diǎn)在圓上,那么稱這個(gè)四邊形是該圓的聯(lián)絡(luò)四邊形,已知圓的半徑長(zhǎng)為,這個(gè)圓的一個(gè)聯(lián)絡(luò)四邊形是邊長(zhǎng)為的菱形,那么這個(gè)菱形不在圓上的頂點(diǎn)與圓心的距離是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCDRtAEF,AB5,AEAF4,連接BFDE.若△AEF繞點(diǎn)A旋轉(zhuǎn),當(dāng)∠ABF最大時(shí),SADE_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABO的直徑,C、GO上兩點(diǎn),且,過(guò)點(diǎn)C的直線CDBG于點(diǎn)D,交BA的延長(zhǎng)線于點(diǎn)E,連接BC,交OD于點(diǎn)F.

1)求證:CDO的切線.

2)若,E的度數(shù).

3)連接AD,在(2)的條件下,若CD=,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,(為坐標(biāo)原點(diǎn),點(diǎn),點(diǎn)中點(diǎn),連接(繞點(diǎn)順時(shí)針旋轉(zhuǎn),得到,記旋轉(zhuǎn)角為,點(diǎn)的對(duì)應(yīng)點(diǎn)分別是,連接中點(diǎn),連接

1)如圖①,當(dāng)時(shí),求點(diǎn)的坐標(biāo);

2)如圖②,當(dāng)時(shí),求證,且;

3)當(dāng)旋轉(zhuǎn)至點(diǎn)共線時(shí),求點(diǎn)的坐標(biāo)(直接寫出結(jié)果即可)

查看答案和解析>>

同步練習(xí)冊(cè)答案