【題目】如圖,AB是⊙O的直徑,C、G是⊙O上兩點,且,過點C的直線CDBG于點D,交BA的延長線于點E,連接BC,交OD于點F.
(1)求證:CD是⊙O的切線.
(2)若,求E的度數(shù).
(3)連接AD,在(2)的條件下,若CD=,求AD的長.
【答案】(1)證明見解析;(2)∠E=30°;(3)AD=.
【解析】
試題(1)如圖1,連接OC,AC,CG,由圓周角定理得到∠ABC=∠CBG,根據(jù)同圓的半徑相等得到OC=OB,于是得到∠OCB=∠OBC,等量代換得到∠OCB=∠CBG,根據(jù)平行線的判定得到OC∥BG,即可得到結(jié)論;(2)由OC∥BD,得到△OCF∽△BDF,△EOC∽△EBD,得到,,根據(jù)直角三角形的性質(zhì)即可得到結(jié)論;(3)如圖2,過A作AH⊥DE于H,解直角三角形得到BD=3,DE=3,BE=6,在Rt△DAH中,AD===.
試題解析:(1)證明:如圖1,連接OC,AC,CG,
∵AC=CG,∴,∴∠ABC=∠CBG,
∵OC=OB,∴∠OCB=∠OBC,∴∠OCB=∠CBG,∴OC∥BG,
∵CD⊥BG,∴OC⊥CD,∴CD是⊙O的切線;
(2)解:∵OC∥BD,∴△OCF∽△BDF,△EOC∽△EBD,
∴,∴,
∵OA=OB,∴AE=OA=OB,∴OC=OE,
∵∠ECO=90°,∴∠E=30°;
(3)解:如圖2,過A作AH⊥DE于H,
∵∠E=30°∴∠EBD=60°,∴∠CBD=EBD=30°,
∵CD=,∴BD=3,DE=3,BE=6,∴AE=BE=2,
∴AH=1,∴EH=,∴DH=2,
在Rt△DAH中,AD===.
故答案為(1)證明見解析;(2)∠E=30°;(3)AD=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=5cm,∠BAC=60°,動點M從點B出發(fā),在BA邊上以每秒2cm的速度向點A勻速運動,同時動點N從點C出發(fā),在CB邊上以每秒cm的速度向點B勻速運動,設(shè)運動時間為t秒(0≤t≤5),連接MN.
(1)若BM=BN,求t的值;
(2)若△MBN與△ABC相似,求t的值;
(3)當(dāng)t為何值時,四邊形ACNM的面積最。坎⑶蟪鲎钚≈担
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了清洗水箱,需先放掉水箱內(nèi)原有的存水,如圖是水箱剩余水量y(升)隨放水時間x(分)變化的圖象.
(1)求y關(guān)于x的函數(shù)表達式,并確定自變量x的取值范圍;
(2)若8:00打開放水龍頭,估計8:55﹣9:10(包括8:55和9:10)水箱內(nèi)的剩水量(即y的取值范圍);
(3)當(dāng)水箱中存水少于10升時,放水時間至少超過多少分鐘?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,二次函數(shù)y=ax2+2ax﹣3a(a>0)圖象的頂點為C,與x軸交于A,B兩點(點A在點B的左側(cè)),點C,B關(guān)于過點A的直線l對稱,直線l與y軸交于D.
(1)求A,B兩點坐標及直線l的解析式;
(2)求二次函數(shù)解析式;
(3)在第三象限拋物線上有一個動點E,連接OE交直線l于點F,求的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:正方形ABCD,等腰直角三角板的直角頂點落在正方形的頂點D處,使三角板繞點D旋轉(zhuǎn).
(1)當(dāng)三角板旋轉(zhuǎn)到圖1的位置時,猜想CE與AF的數(shù)量關(guān)系,并加以證明;
(2)在(1)的條件下,若DE:AE:CE=1::3,求∠AED的度數(shù);
(3)若BC=4,點M是邊AB的中點,連結(jié)DM,DM與AC交于點O,當(dāng)三角板的邊DF與邊DM重合時(如圖2),若OF=,求DF和DN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,對角線AC,BD交于點O,AE⊥BC交CB延長線于E,CF∥AE交AD延長線于點F.
(1)求證:四邊形AECF是矩形;
(2)連接OE,若AE=8,AD=10,求OE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,AD與圓相切,請在下圖中,僅用無刻度的直尺按要求畫圖.
(1)若BC是圓的直徑,畫出平行四邊形ABCD的邊CD上的高;
(2)若CD與圓相切,畫出平行四邊形ABCD的邊BC上的高AE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,折疊矩形的一邊,使點落在邊的點處,折痕為,連接.已知點的坐標為,二次函數(shù)圖象經(jīng)過、、三點.
(1)求函數(shù)解析式;
(2)在軸下方拋物線上有一動點,過點作軸,交軸于點,連接,當(dāng)與相似時,求點的坐標.
(3)在拋物線對稱軸上是否存在一點,使有最大值?若存在,請直接寫出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)探究:
問題:如圖1,等邊三角形ABC的邊長為6,點O是∠ABC和∠ACB的角平分線交點,∠FOG=120°,繞點O任意旋轉(zhuǎn)∠FOG,分別交△ABC的兩邊于D,E兩點求四邊形ODBE的面積.
討論:
①甲:在∠FOG旋轉(zhuǎn)過程中,當(dāng)OF經(jīng)過點B時,OG一定經(jīng)過點C.
②乙:小明的分析有道理,這樣,我們就可以利用“ASA”證出△ODB≌△OEC.
③丙:因為△ODB≌△OEC,所以只要算出△OBC的面積就得出了四邊形ODBE的面積.
老師:同學(xué)們的思路很清晰,也很正確,在分析和解決問題時,我們經(jīng)常會借用特例作輔助線來解決一般問題請你按照探究的思路,直接寫出四邊形ODBE的面積:________.
(2)應(yīng)用:
①特例:如圖2,∠FOG的頂點O在等邊三角形ABC的邊BC上,OB=2,OC=4,邊OG⊥AC于點E,OF⊥AB于點D,求△BOD面積.
②探究:如圖3,已知∠FOG=60°,頂點O在等邊三角形ABC的邊BC上,OB=2,OC=4,記△BOD的面積為x,△COE的面積為y,求xy的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com