【題目】已知:正方形ABCD,等腰直角三角板的直角頂點落在正方形的頂點D處,使三角板繞點D旋轉(zhuǎn).
(1)當三角板旋轉(zhuǎn)到圖1的位置時,猜想CE與AF的數(shù)量關(guān)系,并加以證明;
(2)在(1)的條件下,若DE:AE:CE=1::3,求∠AED的度數(shù);
(3)若BC=4,點M是邊AB的中點,連結(jié)DM,DM與AC交于點O,當三角板的邊DF與邊DM重合時(如圖2),若OF=,求DF和DN的長.
【答案】(1)CE=AF,見解析;(2)∠AED=135°;(3),.
【解析】
(1)由正方形和等腰直角三角形的性質(zhì)判斷出△ADF≌△CDE即可;
(2)設DE=k,表示出AE,CE,EF,判斷出△AEF為直角三角形,即可求出∠AED;
(3)由AB∥CD,得出,求出DM,DO,再判斷出△DFN∽△DCO,得到,求出DN、DF即可.
解:(1)CE=AF,
在正方形ABCD和等腰直角三角形CEF中,FD=DE,CD=AD,∠ADC=∠EDF=90°,
∴∠ADF=∠CDE,
∴△ADF≌△CDE(SAS),
∴CE=AF;
(2)設DE=k,
∵DE:AE:CE=1::3
∴AE=k,CE=AF=3k,
∴EF=k,
∵AE2+EF2=7k2+2k2=9k2,AF2=9k2,
即AE2+EF2=AF2
∴△AEF為直角三角形,
∴∠AEF=90°
∴∠AED=∠AEF+DEF=90°+45°=135°;
(3)∵M是AB的中點,
∴MA=AB=AD,
∵AB∥CD,
∴△MAO∽△DCO,
∴,
在Rt△DAM中,AD=4,AM=2,
∴DM=2,
∴DO=,
∵OF=,
∴DF=,
∵∠DFN=∠DCO=45°,∠FDN=∠CDO,
∴△DFN∽△DCO,
∴,即,
∴DN=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在銳角三角形ABC中,點D、E分別在邊AC、AB上,AG⊥BC于點G,AF⊥DE于點F,∠EAF=∠GAC.
(1)求證:△ADE∽△ABC;
(2)若AD=BE=4,AE=3,求CD的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將矩形紙片ABCD的四個角向內(nèi)折起,恰好拼成一個無縫隙,無重疊的四邊形EFGH,設AB=a,BC=b,若AH=1,則( )
A.a2=4b﹣4B.a2=4b+4C.a=2b﹣1D.a=2b+1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD和Rt△AEF,AB=5,AE=AF=4,連接BF,DE.若△AEF繞點A旋轉(zhuǎn),當∠ABF最大時,S△ADE=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在x軸的上方,直角∠BOA繞原點O按順時針方向旋轉(zhuǎn).若∠BOA的兩邊分別與函數(shù)、的圖象交于B、A兩點,則∠OAB大小的變化趨勢為( )
A.逐漸變小B.逐漸變大C.時大時小D.保持不變
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C、G是⊙O上兩點,且,過點C的直線CDBG于點D,交BA的延長線于點E,連接BC,交OD于點F.
(1)求證:CD是⊙O的切線.
(2)若,求E的度數(shù).
(3)連接AD,在(2)的條件下,若CD=,求AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+3x+c(a<0)與x軸交于點A和點B(點A在原點的左側(cè),點B在原點的右側(cè)),與y軸交于點C,OB=OC=4.
(1)求該拋物線的函數(shù)解析式.
(2)如圖1,連接BC,點D是直線BC上方拋物線上的點,連接OD,CD.OD交BC于點F,當S△COF:S△CDF=4:3時,求點D的坐標.
(3)如圖2,點E的坐標為(0,-2),點P是拋物線上的點,連接EB,PB,PE形成的△PBE中,是否存在點P,使∠PBE或∠PEB等于2∠OBE?若存在,請直接寫出符合條件的點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,作的角平分線交于點,以為圓心,為半徑作圓.
(1)依據(jù)題意補充完整圖形;(尺規(guī)作圖,保留作圖痕跡,不寫作法)
(2)求證:與直線相切;
(3)在(2)的條件下,若與直線相切的切點為,與相交于點,連接,;其中,,求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形AOCB的兩邊OA、OC分別在x軸和y軸上,且OA=2,OC=1.在第二象限內(nèi),將矩形AOCB以原點O為位似中心放大為原來的倍,得到矩形A1OC1B1,再將矩形A1OC1B1以原點O為位似中心放大倍,得到矩形A2OC2B2,以此類推,得到的矩形A2020OC2020B2020的對角線交點的縱坐標為______________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com