【題目】拋物線軸交于,兩點(diǎn)(點(diǎn)在點(diǎn)左側(cè)),拋物線的頂點(diǎn)為

1)拋物線的對(duì)稱軸是直線________;

2)當(dāng)時(shí),求拋物線的函數(shù)表達(dá)式;

3)在(2)的條件下,直線經(jīng)過拋物線的頂點(diǎn),直線與拋物線有兩個(gè)公共點(diǎn),它們的橫坐標(biāo)分別記為,,直線與直線的交點(diǎn)的橫坐標(biāo)記為,若當(dāng)時(shí),總有,請(qǐng)結(jié)合函數(shù)的圖象,直接寫出的取值范圍.

【答案】1;(2;(3

【解析】

1)根據(jù)拋物線的函數(shù)表達(dá)式,利用二次函數(shù)的性質(zhì)即可找出拋物線的對(duì)稱軸;(2)根據(jù)拋物線的對(duì)稱軸及即可得出點(diǎn)、的坐標(biāo),根據(jù)點(diǎn)的坐標(biāo),利用待定系數(shù)法即可求出拋物線的函數(shù)表達(dá)式;(3)利用配方法求出拋物線頂點(diǎn)的坐標(biāo),依照題意畫出圖形,觀察圖形可得出,再利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可得出,結(jié)合的取值范圍即可得出的取值范圍.

1)∵拋物線的表達(dá)式為,

∴拋物線的對(duì)稱軸為直線

故答案為:

2)∵拋物線的對(duì)稱軸為直線,

∴點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為

代入,得:,

解得:,

∴拋物線的函數(shù)表達(dá)式為

3)∵,

∴點(diǎn)的坐標(biāo)為

∵直線y=n與直線的交點(diǎn)的橫坐標(biāo)記為,且當(dāng)時(shí),總有,

x2<x3<x1

x3>0,

∴直線軸的交點(diǎn)在下方,

∵直線經(jīng)過拋物線的頂點(diǎn),

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線yax22ax2,與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,A(﹣20

1)直接寫出:a   

2)如圖1,點(diǎn)P在第一象限內(nèi)拋物線上的一點(diǎn),過點(diǎn)Px軸的垂線交CB的延長線于點(diǎn)D,交AC的延長線于點(diǎn)Q,當(dāng)QAPQCD相似時(shí),求P點(diǎn)的坐標(biāo);

3)如圖2,拋物線的對(duì)稱軸交x軸于點(diǎn)MN為第二象限內(nèi)拋物線上的一點(diǎn),直線NA,NB分別交y軸于D,E兩點(diǎn),分別交拋物線的對(duì)稱軸于F,G兩點(diǎn).

①求tanFAMtanGAM的值;

②若,求N點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,弦CDAB于點(diǎn)E,F是弧AD上的一點(diǎn),AF,CD的延長線相交于點(diǎn)G

1)若⊙O的半徑為3,且∠DFC45°,求弦CD的長.

2)求證:∠AFC=∠DFG

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C90°,AB8

1)作ABC的內(nèi)角∠CAB的平分線,與邊BC交于點(diǎn)D(用尺規(guī)作圖,保留作圖痕跡,不要求寫作法);

2)若ADBD,求CD的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料:

材料一:

早在2011925日,北京故宮博物院就開始嘗試網(wǎng)絡(luò)預(yù)售門票,2011年全年網(wǎng)絡(luò)售票僅占1.68%.2012年至2014年,全年網(wǎng)絡(luò)售票占比都在2%左右.2015年全年網(wǎng)絡(luò)售票占17.33%,2016年全年網(wǎng)絡(luò)售票占比增長至41.14%.20178月實(shí)現(xiàn)網(wǎng)絡(luò)售票占比77%.2017102日,首次實(shí)現(xiàn)全部網(wǎng)上售票.與此同時(shí),網(wǎng)絡(luò)購票也采用了人性化的服務(wù)方式,為沒有線上支付能力的觀眾提供代客下單服務(wù).實(shí)現(xiàn)全網(wǎng)絡(luò)售票措施后,在北京故宮博物院的精細(xì)化管理下,觀眾可以更自主地安排自己的行程計(jì)劃,獲得更美好的文化空間和參觀體驗(yàn).

材料二:

以下是某同學(xué)根據(jù)網(wǎng)上搜集的數(shù)據(jù)制作的2013-2017年度中國國家博物館參觀人數(shù)及年增長率統(tǒng)計(jì)表.

年度

2013

2014

2015

2016

2017

參觀人數(shù)(人次)

7 450 000

7 630 000

7 290 000

7 550 000

8 060 000

年增長率(%)

38.7

2.4

-4.5

3.6

6.8

他還注意到了如下的一則新聞:201838日,中國國家博物館官方微博發(fā)文,宣布取消紙質(zhì)門票,觀眾持身份證預(yù)約即可參觀. 國博正在建設(shè)智慧國家博物館,同時(shí)館方工作人員擔(dān)心的是:雖然有故宮免(紙質(zhì))票的經(jīng)驗(yàn)在前,但對(duì)于國博來說這項(xiàng)工作仍有新的挑戰(zhàn).參觀故宮需要觀眾網(wǎng)上付費(fèi)購買門票,他遵守預(yù)約的程度是不一樣的.但(國博)免費(fèi)就有可能約了不來,擠占資源,所以難度其實(shí)不一樣.” 盡管如此,國博仍將積極采取技術(shù)和服務(wù)升級(jí),希望帶給觀眾一個(gè)更完美的體驗(yàn)方式.

根據(jù)以上信息解決下列問題:

(1)補(bǔ)全以下兩個(gè)統(tǒng)計(jì)圖;

(2)請(qǐng)你預(yù)估2018年中國國家博物館的參觀人數(shù),并說明你的預(yù)估理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+2x﹣3x軸交于A、B兩點(diǎn),且B(1,0)

(1)求拋物線的解析式和點(diǎn)A的坐標(biāo);

(2)如圖1,點(diǎn)P是直線y=x上的動(dòng)點(diǎn),當(dāng)直線y=x平分∠APB時(shí),求點(diǎn)P的坐標(biāo);

3)如圖2,已知直線y=x分別與x軸、y軸交于C、F兩點(diǎn),點(diǎn)Q是直線CF下方的拋物線上的一個(gè)動(dòng)點(diǎn),過點(diǎn)Qy軸的平行線,交直線CF于點(diǎn)D,點(diǎn)E在線段CD的延長線上,連接QE.問:以QD為腰的等腰△QDE的面積是否存在最大值?若存在,請(qǐng)求出這個(gè)最大值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形ABCD中,AD∥BC(BC>AD),∠D=90°,BC=CD=12,∠ABE=45°,若AE=10.求CE的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在噴水池的中心A處豎直安裝一個(gè)水管AB,水管的頂端安有一個(gè)噴水池,使噴出的拋物線形水柱在與池中心A的水平距離為1m處達(dá)到最高點(diǎn),高度為3m,水柱落地點(diǎn)D離池中心A3m,以水平方向?yàn)?/span>軸,建立平面直角坐標(biāo)系,若選取點(diǎn)為坐標(biāo)原點(diǎn)時(shí)的拋物線的表達(dá)式為,則選取點(diǎn)為坐標(biāo)原點(diǎn)時(shí)的拋物線表達(dá)式為______,水管的長為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)A、C分別在x軸的負(fù)半軸、y軸的正半軸上,點(diǎn)B在第二象限.將矩形OABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn),使點(diǎn)B落在y軸上,得到矩形ODEF,BC與OD相交于點(diǎn)M.若經(jīng)過點(diǎn)M的反比例函數(shù)y=(x0)的圖象交AB于點(diǎn)N,的圖象交AB于點(diǎn)N, S矩形OABC=32,tanDOE=,,則BN的長為______________.

查看答案和解析>>

同步練習(xí)冊(cè)答案