【題目】如圖,已知半徑為2的⊙O與直線l相切于點A,點P是直徑AB左側半圓上的動點,過點P作直線l的垂線,垂足為C,PC與⊙O交于點D,連接PA、PB,設PC的長為x(2<x<4),則PDCD的最大值是( 。
A.2B.3C.4D.6
【答案】A
【解析】
過點O向BC作垂線OH,垂足為H,由垂徑定理得到H為PD的中點,設PC=x,根據(jù)CD=PC-PD,進而求出PD·CD,整理后得到關于x的二次函數(shù),利用二次函數(shù)的性質即可求出所求式子的最大值及此時x的取值.
過點O向BC作垂線OH,垂足為H,
∵PD是⊙O的弦,OH⊥PD,
∴PH=HD.
∵∠CHO=∠HCA=∠OAC=90°,
∴四邊形OACH為矩形,
∴CH=OA=2,
∵PC=x,
∴PH=HD=PC-CH=x-2,
∴CD=PC-PD=x-2(x-2)=4-x,
∴PD·CD=2 (x-2)(4-x)=-2x2+12x-16=-2(x-3)2+2,
∵2<x<4,
∴當x=3時,PD·CD的值最大,最大值是2,
故選:A.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑作半圓⊙O,交BC于點D,連接AD,過點D作DE⊥AC,垂足為點E,交AB的延長線于點F.
(1)求證:EF是⊙O的切線;
(2)如果⊙O的半徑為5,cos∠DAB=,求BF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線經過點A(,0)和點B(1,),與x軸的另一個交點為C.
(1)求拋物線的函數(shù)表達式;
(2)點D在對稱軸的右側,x軸上方的拋物線上,且∠BDA=∠DAC,求點D的坐標;
(3)在(2)的條件下,連接BD,交拋物線對稱軸于點E,連接AE.
①判斷四邊形OAEB的形狀,并說明理由;
②點F是OB的中點,點M是直線BD的一個動點,且點M與點B不重合,當∠BMF=∠MFO時,請直接寫出線段BM的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=k1x(x≥0)與雙曲線y= (x>0)相交于點P(2,4).已知點A(4,0),B(0,3),連接AB,將Rt△AOB沿OP方向平移,使點O移動到點P,得到△A′PB′.過點A′作A′C∥y軸交雙曲線于點C,連接CP.
(1)求k1與k2的值;
(2)求直線PC的解析式;
(3)直接寫出線段AB掃過的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】5月初,為了解我校九年級男生米跑的水平,制定合理的體育訓練計劃,從全年級隨機抽取部分男生進行測試,并把測試成績分為四個等次繪制成如圖所示的不完整的統(tǒng)計圖,請你依圖解答下列問題:
(1)a= _,b= _;
(2)扇形統(tǒng)計圖中表示等次的扇形所對的圓心角的度數(shù)為 度;
(3)學校決定從等次的甲、乙、丙、丁四名男生中,隨機選取兩名男生參加全市中學生米跑比賽,請用列表法或畫樹狀圖法,求甲、乙兩名男生同時被選中的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知直線y1=x﹣5與雙曲線y2=﹣.
(1)求證:無論p取何值時,兩個函數(shù)的圖象恒有兩個交點;
(2)設兩個交點分別為A(x1,y1)、B(x2,y2),且滿足x12+x22=3x1x2,求實數(shù)p的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,一次函數(shù)y=﹣x+4的圖象與反比例函數(shù)y=(k>0)的圖象相交于A,B兩點,與x軸相交于點C,連接OB,且BOC的面積為2.則k=______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀材料:如圖,與都是等腰直角三角形,且點在邊上,,的中點均為,連接,,,顯然,點,,在同一條直線上,可以證明,所以
解決問題:
(1) 將圖中的繞點旋轉到圖的位置, 猜想此時線段與的數(shù)量關系,并證明你的結論.
(2) 如圖,若與都是等邊三角形,,的中點均為,上述中結論仍然成立嗎?如果成立,請說明理由;如果不成立,請求出與之間的數(shù)量關系.
(3) 如圖, 若與都是等腰三角形,,的中點均為,且頂角,與之間的數(shù)量關系如何(用含的式子表示出來)?請直接寫出結果.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com