【題目】某公司計劃投資、兩種產(chǎn)品,若只投資產(chǎn)品,所獲得利潤(萬元)與投資金額(萬元)之間的關系如圖所示,若只投資產(chǎn)品,所獲得利潤(萬元)與投資金額(萬元)的函數(shù)關系式為.
(1)求與之間的函數(shù)關系式;
(2)若投資產(chǎn)品所獲得利潤的最大值比投資產(chǎn)品所獲得利潤的最大值少萬元,求的值;
(3)該公司籌集萬元資金,同時投資、兩種產(chǎn)品,設投資產(chǎn)品的資金為萬元,所獲得的總利潤記作萬元,若時,隨的增大而減少,求的取值范圍.
【答案】(1);(2);(3)
【解析】
(1)由圖象可得函數(shù)拋物線的頂點坐標及經(jīng)過的點,由待定系數(shù)法即可求解;
(2)由(1)可得的最大值,由的函數(shù)解析式求出產(chǎn)品所獲得利潤的最大值,再依據(jù)題意列方程求解即可;
(3)由得,依據(jù)題意由二次函數(shù)性質可得拋物線對稱軸在30的左邊,由此得關于n的不等式求解即可.
解:(1)由圖象可知點是拋物線的頂點坐標,
設與之間的函數(shù)關系式為,
又點在拋物線上,
,
解得.
與之間的函數(shù)關系式為;
(2)由(1)得,投資產(chǎn)品所獲得利潤的最大值為,
,
投資產(chǎn)品所獲得利潤的最大值為.
由題意可得,,解得.
當時不符合題意,
;
(3)由題意可得,.
當時,隨的增大而減小,
解得.
的取值范圍為.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中的三點A(1,0),B(-1,0),P(0,-1),將線段AB沿y軸向上平移m(m>0)個單位長度,得到線段CD,二次函數(shù)y=a(x-h)2+k的圖象經(jīng)過點P,C,D.
(1)當m=1時,a=______;當m=2時,a=______;
(2)猜想a與m的關系,并證明你的猜想;
(3)將線段AB沿y軸向上平移n(n>0)個單位長度,得到線段C1D1,點C1,D1分別與點A,B對應,二次函數(shù)y=2a(x-h)2+k的圖象經(jīng)過點P,C1,D1.
①求n與m之間的關系;
②當△COD1是直角三角形時,直接寫出a的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某同學利用數(shù)學知識測量建筑物DEFG的高度.他從點出發(fā)沿著坡度為的斜坡AB步行26米到達點B處,用測角儀測得建筑物頂端的仰角為37°,建筑物底端的俯角為30°,若AF為水平的地面,側角儀豎直放置,其高度BC=1.6米,則此建筑物的高度DE約為(精確到米,參考數(shù)據(jù):,)( )
A.米B.米C.米D.米
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司開發(fā)出一款新的節(jié)能產(chǎn)品,該產(chǎn)品的成本價為6元/件,該產(chǎn)品在正式投放市場前通過代銷點進行了為期一個月(30天)的試銷售,售價為8元/件,工作人員對銷售情況進行了跟蹤記錄,并將記錄情況繪成圖象(如圖),圖中的折線ODE表示日銷售量y(件)與銷售時間x(天)之間的函數(shù)關系,已知線段DE表示的函數(shù)關系中,時間每增加1天,日銷售量減少5件.
(1)第24天的日銷售量是 件,日銷售利潤是 元;
(2)求y與x之間的函數(shù)關系式,并寫出x的取值范圍;
(3)日銷售利潤不低于640元的天數(shù)共有多少天?試銷售期間,日銷售最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,將一個正三角形繞其中心最少旋轉,所得圖形與原圖的重疊部分是正六邊形;如圖2,將一個正方形繞其中心最少旋轉 45°,所得圖形與原圖形的重疊部分是正八邊形;依此規(guī)律,將一個正七邊形繞其中心最少旋轉______,所得圖形與原圖的重疊部分是正多邊形.在圖2中,若正方形的邊長為,則所得正八邊形的面積為_______.
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,,,以點為圓心,以為半徑作優(yōu)弧,交于點,交于點.點在優(yōu)弧上從點開始移動,到達點時停止,連接.
(1)當時,判斷與優(yōu)弧的位置關系,并加以證明;
(2)當時,求點在優(yōu)弧上移動的路線長及線段的長.
(3)連接,設的面積為,直接寫出的取值范圍.
備用圖
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某汽車專賣店銷售A、B兩種型號的新能源汽車.上周售出1輛A型車和3輛B型車,兩種車型的銷售總額為96萬元;本周銷售2輛A型車和1輛B型車,兩種車型的銷售總額為62萬元,已知兩種型號汽車銷售價格始終不變.
(1)求A、B兩種車型的銷售單價分別是多少?
(2)第三周計劃售出A、B兩種型號的車共5輛,若銷售總額不少于100萬元,則B型車至少要售出多少輛?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知△ABC的三個頂點的坐標分別為A(﹣3,5),B(﹣2,1),C(﹣1,3).
(1)若△ABC經(jīng)過平移后得到△A1B1C1,已知點C的對應點C的坐標為(4,﹣1),畫出△A1B1C1并寫出頂點A,B對應點A1,B1的坐標;
(2)將△ABC繞著點O按順時針方向旋轉90°得到△A2B2C2,畫出△A2B2C2.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com