【題目】已知:二次函數(shù)y=ax2+2ax﹣4(a≠0)的圖象與x軸交于點(diǎn)A,B(A點(diǎn)在B點(diǎn)的左側(cè)),與y軸交于點(diǎn)C,ABC的面積為12.

(1)求二次函數(shù)圖象的對(duì)稱軸與它的解析式;

(2)點(diǎn)Dy軸上,當(dāng)以A、O、D為頂點(diǎn)的三角形與BOC相似時(shí),求點(diǎn)D的坐標(biāo);

(3)點(diǎn)D的坐標(biāo)為(﹣2,1),點(diǎn)P在二次函數(shù)圖象上,∠ADP為銳角,且tanADP=2,求點(diǎn)P的橫坐標(biāo).

【答案】(1)y=x2+x﹣4;(2)點(diǎn)D的坐標(biāo)為(0,2)或(0,﹣2)或(0,8)或(0,﹣8);(3)P點(diǎn)的橫坐標(biāo)為﹣2

【解析】分析:根據(jù)對(duì)稱軸坐標(biāo)公式可求二次函數(shù)圖象的對(duì)稱軸;當(dāng)x=0時(shí),y=4,可求點(diǎn)C的坐標(biāo)為(0,4),,根據(jù)三角形面積公式可求進(jìn)一步得到A點(diǎn)和B點(diǎn)的坐標(biāo)分別為(4,0),(2,0).待定系數(shù)法可求二次函數(shù)的解析式.

則分兩種情況討論即可.

D軸于F,分兩種情況:①當(dāng)點(diǎn)P在直線AD的下方時(shí),②當(dāng)點(diǎn)P在直線AD的上方時(shí).分別求解.

詳解:(1)該二次函數(shù)的對(duì)稱軸是:直線

當(dāng)x=0時(shí),y=4,

∴點(diǎn)C的坐標(biāo)為(0,4),

連接

又∵點(diǎn)A,B關(guān)于直線x=1對(duì)稱,

A點(diǎn)和B點(diǎn)的坐標(biāo)分別為(4,0),(2,0).

4a+4a4=0,解得

∴所求二次函數(shù)的解析式為

2)如圖1,∵

分兩種情況:

①當(dāng)時(shí),

②當(dāng)時(shí),

綜上所述,點(diǎn)D的坐標(biāo)為;

3)如圖2,過D軸于F,分兩種情況:

①當(dāng)點(diǎn)P在直線AD的下方時(shí),如圖所示:

(1)得點(diǎn)A(4,0),點(diǎn)D(2,1),

DF=1,AF=2.

RtADF,

延長(zhǎng)DF與拋物線交于點(diǎn),點(diǎn)為所求,

∴點(diǎn)的坐標(biāo)為(2,4).

②當(dāng)點(diǎn)P在直線AD的上方時(shí),延長(zhǎng)P1A至點(diǎn)G使得AG=AP1,連接DG,作GHx軸于點(diǎn)H,如圖所示.

可證△GHA≌△P1FA.

HA=AF,GH=P1F,GA=P1A.

又∵A(4,0),P1(2,4),

∴點(diǎn)G的坐標(biāo)是(6,4).

易得DG的解析式為:

中,

設(shè)DG與拋物線的交點(diǎn)為P2,則P2點(diǎn)為所求,設(shè)

代入DG的解析式中,

解得

P2 點(diǎn)在第二象限,

P2點(diǎn)的橫坐標(biāo)為(舍正)

綜上,P點(diǎn)的橫坐標(biāo)為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們?cè)凇岸咽印庇螒蛑邪l(fā)現(xiàn):像圖(1)中的這些數(shù)據(jù)能夠表示成正方形,可將其稱為正方形數(shù);類似地,像圖(2)中的這些數(shù)據(jù)能夠表示成三角形,可將其稱為三角形數(shù).

1)第個(gè)正方形數(shù)是 ;第個(gè)正方形數(shù)是 ;

2)第個(gè)三角形數(shù)是 ;第個(gè)三角形數(shù)是

3)若將一堆小石子按一定規(guī)律擺成下列圖形,請(qǐng)求出第個(gè)圖形中“●”的個(gè)數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為實(shí)施鄉(xiāng)村振興戰(zhàn)略,解決某山區(qū)老百姓出行難的問題,當(dāng)?shù)卣疀Q定修建一條高速公路.其中一段長(zhǎng)為146米的山體隧道貫穿工程由甲乙兩個(gè)工程隊(duì)負(fù)責(zé)施工.甲工程隊(duì)獨(dú)立工作2天后,乙工程隊(duì)加入,兩工程隊(duì)又聯(lián)合工作了1天,這3天共掘進(jìn)26.已知甲工程隊(duì)每天比乙工程隊(duì)多掘進(jìn)2米,按此速度完成這項(xiàng)隧道貫穿工程,甲乙兩個(gè)工程隊(duì)還需聯(lián)合工作多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在△ABC中,M、N分別是邊AB、AC的中點(diǎn),D是邊BC延長(zhǎng)線上的一點(diǎn),且,聯(lián)結(jié)CMDN

1)求證:四邊形MCDN是平行四邊形;

2)若三角形AMN的面積等于5,求梯形MBDN的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】溫度通常有兩種表示方法:華氏度(單位:)與攝氏度(單位:).已知華氏度數(shù)y與攝氏度數(shù)x之間是一次函數(shù)關(guān)系.下表列出了部分華氏度與攝氏度之間的對(duì)應(yīng)關(guān)系.

攝氏度數(shù)x

0

35

100

華氏度數(shù)y

32

95

212

1)選用表格中給出的數(shù)據(jù),求y關(guān)于x的函數(shù)解析式(不需要寫出該函數(shù)的定義域);

2)已知某天的最低氣溫是,求與之對(duì)應(yīng)的華氏度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖1.正方形ABCD,過點(diǎn)A作∠EAF=90°,兩邊分別交直線BC于點(diǎn)E,交線段CD于點(diǎn)F,GAE中點(diǎn),連接BG

(1)求證:ABE≌△ADF

(2)如圖2,過點(diǎn)GBG的垂線交對(duì)角線AC于點(diǎn)H,求證:GH=GB;

(3)如圖3,連接HF,若CH=3AH,AD=2,求線段HF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校開展了互助、平等、感恩、和諧、進(jìn)取主題班會(huì)活動(dòng),活動(dòng)后,就活動(dòng)的個(gè)主題進(jìn)行了抽樣調(diào)查(每位同學(xué)只選最關(guān)注的一個(gè)),根據(jù)調(diào)查結(jié)果繪制了兩幅不完整的統(tǒng)計(jì)圖.根據(jù)圖中提供的信息,解答下列問題:

(1)這次調(diào)查的學(xué)生共有多少名?

(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整,并在扇形統(tǒng)計(jì)圖中計(jì)算出進(jìn)取所對(duì)應(yīng)的圓心角的度數(shù).

(3)如果要在這個(gè)主題中任選兩個(gè)進(jìn)行調(diào)查,根據(jù)(2)中調(diào)查結(jié)果,用樹狀圖或列表法,求恰好選到學(xué)生關(guān)注最多的兩個(gè)主題的概率(將互助、平等、感恩、和諧、進(jìn)取依次記為A、B、C、D、E).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠接受了20天內(nèi)生產(chǎn)1200臺(tái)GH型電子產(chǎn)品的總?cè)蝿?wù).已知每臺(tái)GH型產(chǎn)品由4個(gè)G型裝置和3個(gè)H型裝置配套組成.工廠現(xiàn)有80名工人,每個(gè)工人每天能加工6個(gè)G型裝置或3個(gè)H型裝置.工廠將所有工人分成兩組同時(shí)開始加工,每組分別加工一種裝置,并要求每天加工的G、H型裝置數(shù)量正好全部配套組成GH型產(chǎn)品.

(1)按照這樣的生產(chǎn)方式,工廠每天能配套組成多少套GH型電子產(chǎn)品?請(qǐng)列出二元一次方程組解答此問題.

(2)為了在規(guī)定期限內(nèi)完成總?cè)蝿?wù),工廠決定補(bǔ)充一些新工人,這些新工人只能獨(dú)立進(jìn)行G型裝置的加工,且每人每天只能加工4個(gè)G型裝置.1.設(shè)原來(lái)每天安排x名工人生產(chǎn)G型裝置,后來(lái)補(bǔ)充m名新工人,求x的值(用含m的代數(shù)式表示)2.請(qǐng)問至少需要補(bǔ)充多少名新工人才能在規(guī)定期內(nèi)完成總?cè)蝿?wù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知菱形的周長(zhǎng)為40,兩條對(duì)角線的長(zhǎng)度比為34,那么兩條對(duì)角線的長(zhǎng)分別為(

A.6,8B.34C.12,16D.24,32

查看答案和解析>>

同步練習(xí)冊(cè)答案