【題目】我國北斗導(dǎo)航裝備的不斷更新,極大方便人們的出行.光明中學(xué)組織學(xué)生利用導(dǎo)航到金牛山進(jìn)行研學(xué)活動(dòng),到達(dá)A地時(shí),發(fā)現(xiàn)C地恰好在A地正北方向,且距離A11.46千米.導(dǎo)航顯示路線應(yīng)沿北偏東60°方同走到B地,再沿北偏西37°方向走一段距離才能到達(dá)C地,求B,C兩地的距離(精確到1千米)

(參考數(shù)據(jù)sin53°≈0.80,cos53°≈0.60,≈1.73)

【答案】B、C兩地的距離為10千米.

【解析】

如圖作BEACE.設(shè)AEx千米.根據(jù)三角函數(shù)構(gòu)建方程即可解決問題.

解:如圖作BEACE.設(shè)AEx千米.

RtABE中,∵∠AEB90°,∠A60°,AEx千米,

BEx(千米),

sin53°≈0.80,cos53°≈0.60,

tan53°

RtBCE中,tanCBE

,

x≈3.50

BC≈10(千米),

答:B,C兩地的距離為10千米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)的圖象經(jīng)過點(diǎn)(212)(3,﹣3)

(1)求這個(gè)一次函數(shù)的表達(dá)式.

(2)畫出這條直線的圖象.

(3)設(shè)這條直線與兩坐標(biāo)軸的交點(diǎn)分別為A、B,求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線的頂點(diǎn)為,且經(jīng)過點(diǎn),與軸分別交于、兩點(diǎn).

1)求直線和拋物線的函數(shù)表達(dá)式;

2)如圖,點(diǎn)是拋物線上的一個(gè)動(dòng)點(diǎn),且在直線的下方,過點(diǎn)軸的平行線與直線交于點(diǎn),求的最大值;

3)如圖,過點(diǎn)的直線交軸于點(diǎn),且軸,點(diǎn)是拋物線上、之間的一個(gè)動(dòng)點(diǎn),直線、分別交于、兩點(diǎn).當(dāng)點(diǎn)運(yùn)動(dòng)時(shí),是否為定值?若是,試求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊三角形ABC中,點(diǎn)D,E分別在邊BCAC上,且DE∥AB,過點(diǎn)EEF⊥DE,交BC的延長線于點(diǎn)F.

1)求∠F的度數(shù);

2)若CD=2,求DF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=x+4的圖象與反比例函數(shù)y=(k為常數(shù)且k0)的圖象交于A(﹣1,a),B兩點(diǎn),與x軸交于點(diǎn)C.

(1)求此反比例函數(shù)的表達(dá)式;

(2)若點(diǎn)P在x軸上,且SACP=SBOC,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某縣從全縣九年級學(xué)生中隨機(jī)抽取了部分學(xué)生進(jìn)行了一次中考體育科目測試(把測試結(jié)果分為四個(gè)等級:級:優(yōu)秀;級:良好;級:及格;級:不及格),并將測試結(jié)果繪成了如下兩幅不完整的統(tǒng)計(jì)圖.請根據(jù)統(tǒng)計(jì)圖中的信息解答下列問題:

(1)本次抽樣測試的學(xué)生人數(shù)是 ;

(2)如圖中的度數(shù)是 ,并把如圖條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)測試?yán)蠋熛霃?/span>4位同學(xué)(分別記為,其中為小明)中隨機(jī)選擇兩位同學(xué)了解訓(xùn)練情況,請用列表或畫樹形圖的方法求出選中小明概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A-3,2)和點(diǎn)Bmn)在反比例函數(shù)y=k≠0)的圖象上(其中m0),ACx軸,垂足為C,BDy軸,垂足為D,直線ABx軸相交于點(diǎn)E

1)寫出反比例函數(shù)表達(dá)式;

2)求tanABD(用含m的代數(shù)式表示);

3)若CE=6,直接寫出B點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC,ABC=90°,BC=3,DAC延長線上一點(diǎn)AC=3CD,過點(diǎn)DDHAB,BC的延長線于點(diǎn)H.

(1)BD·cosHBD的值;

(2)若∠CBD=AAB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,先將繞著頂點(diǎn)順時(shí)針旋轉(zhuǎn),然后再將旋轉(zhuǎn)后的三角形進(jìn)行放大或縮小得到(點(diǎn)的對應(yīng)點(diǎn)分別是點(diǎn)),聯(lián)結(jié),如果相似,那么的長是__________

查看答案和解析>>

同步練習(xí)冊答案