【題目】泗縣某童裝專賣店在銷售中發(fā)現(xiàn),一款童裝每件進(jìn)價(jià)為元,利潤為元時(shí),每天可售出件,為了迎接六一兒童節(jié),商店決定采取適當(dāng)?shù)慕祪r(jià)措施,以擴(kuò)大銷售量增加利潤,經(jīng)市場調(diào)查發(fā)現(xiàn),如果每件童裝降價(jià)元,那么平均每天可售出件.

1)設(shè)每件童裝降價(jià)元,每天可售出 件,每件盈利 元,若商家平均每天能贏利元,每件童裝應(yīng)降價(jià)多少元?根據(jù)題意,列出方程

2)利用配方法解答(1)中所列方程.

【答案】1;;(2,

【解析】

1)設(shè)每件童裝降價(jià)x元,則銷售量為(20+2x)件,每件盈利(40-x),根據(jù)總利潤=每件利潤×銷售數(shù)量,即可得出關(guān)于x的一元二次方程;
2)先把常數(shù)項(xiàng)移到方程左邊,再把方程兩邊加上225,然后把方程左邊配成完全平方形式求解即可.

解:(1)設(shè)每件童裝降價(jià)x元,則銷售量為(20+2x)件,每件盈利(40-x),
根據(jù)列出方程:(40-x)(20+2x=1200

2)(40-x)(20+2x=1200,
整理得:x2-30x+200=0,

x-30x+225=-200+225

(x-15)=25,

x-15=±5,
解得:x1=10x2=20
答:每件童裝降價(jià)20元時(shí),能讓利于顧客并且商家平均每天能贏利1200元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線的函數(shù)表達(dá)式為,它與軸、軸的交點(diǎn)分別為A、B兩點(diǎn).

(1)求點(diǎn)A、B的坐標(biāo);

(2)設(shè)F是軸上一動點(diǎn),⊙P經(jīng)過點(diǎn)B且與軸相切于點(diǎn)F,設(shè)⊙P的圓心坐標(biāo)為P(x,y),求y與之間的函數(shù)關(guān)系;

(3)是否存在這樣的⊙P,既與軸相切,又與直線相切于點(diǎn)B?若存在,求出圓心P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】每年的93日是中國人民抗日戰(zhàn)爭勝利紀(jì)念日,某紅色旅游景區(qū)為紀(jì)念抗日戰(zhàn)爭勝利73周年,今年9~10月份,對團(tuán)體購買門票實(shí)行優(yōu)惠,決定在原定票價(jià)基礎(chǔ)上每張降價(jià)16元,這樣按原定票價(jià)需花費(fèi)2000元購買的門票張數(shù),現(xiàn)在只花費(fèi)了1200.

(1)求每張門票的原定票價(jià);

(2)根據(jù)實(shí)際情況,該景區(qū)決定對網(wǎng)上購票的個(gè)人也采取優(yōu)惠,原定票價(jià)經(jīng)過連續(xù)兩次降價(jià)后票價(jià)為每張32.4元,求原定票價(jià)平均每次的下降率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某花圃用花盆培育某種花苗,經(jīng)過實(shí)驗(yàn)發(fā)現(xiàn)每盆的盈利與每盆的株數(shù)構(gòu)成一定的關(guān)系.每盆植入3株時(shí),平均單株盈利3元;以同樣的栽培條件,若每盆增加1株,平均單株盈利就減少0.5元.要使每盆的盈利達(dá)到10元,每盆應(yīng)該植多少株?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,正方形OABC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,點(diǎn)C的坐標(biāo)為(0,3),點(diǎn)A在x軸的負(fù)半軸上,點(diǎn)D、M分別在邊AB、OA上,且AD=2DB,AM=2MO,一次函數(shù)y=kx+b的圖象過點(diǎn)D和M,反比例函數(shù)y=的圖象經(jīng)過點(diǎn)D,與BC的交點(diǎn)為N.

(1)求反比例函數(shù)和一次函數(shù)的解析式;

(2)若點(diǎn)P在直線DM上,且使△OPM的面積與四邊形OMNC的面積相等,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,以斜邊上的中線為直徑作,分別與、交于點(diǎn)、.

1)過點(diǎn)的切線相交于點(diǎn),求證:;

2)連接,求證:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC內(nèi)接與⊙O,AB是直徑,⊙O的切線PCBA的延長線于點(diǎn)P,OF∥BCACAC點(diǎn)E,交PC于點(diǎn)F,連接AF

1)判斷AF⊙O的位置關(guān)系并說明理由;

2)若⊙O的半徑為4,AF=3,求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】大美開州,最帥漢豐湖,漢豐湖步道已成為市民最好休閑圣地.雪松和余樂樂相約分別從舉子園、博物館出發(fā),沿環(huán)湖步道相向而行.雪松開始跑步前進(jìn),中途在某地改為步行,且步行的速度為跑步速度的一半,雪松先出發(fā)5分鐘后,余樂樂才騎自行車勻速向舉子園行駛.雪松到達(dá)博物館恰好用了35分鐘.兩人之間的距離ym)與雪松離開出發(fā)地的時(shí)間xmin)之間的函數(shù)圖象如圖所示,則當(dāng)余樂樂剛到舉子園時(shí),雪松離舉子園的距離為_____米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【提出問題】

1)如圖1,在等邊ABC中,點(diǎn)MBC上的任意一點(diǎn)(不含端點(diǎn)B、C),連結(jié)AM,以AM為邊作等邊AMN,連結(jié)CN.求證:ABC=ACN

【類比探究】

2)如圖2,在等邊ABC中,點(diǎn)MBC延長線上的任意一點(diǎn)(不含端點(diǎn)C),其它條件不變,(1)中結(jié)論ABC=ACN還成立嗎?請說明理由.

【拓展延伸】

3)如圖3,在等腰ABC中,BA=BC,點(diǎn)MBC上的任意一點(diǎn)(不含端點(diǎn)B、C),連結(jié)AM,以AM為邊作等腰AMN,使頂角AMN=ABC.連結(jié)CN.試探究ABCACN的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案