【題目】如圖,正比例函數(shù)y=2x的圖象與反比例函數(shù)y=的圖象交于A,B兩點,過點AAC垂直x軸于點C,連接BC.若△ABC的面積為2

1)求k的值;

2)直接寫出2x時,自變量x的取值范圍.

【答案】1k=2;(2x<-10<x<1

【解析】

1)根據(jù)對稱性可得OA=OB,從而可得ACO的面積為1,由此可求出點A的坐標,然后運用待定系數(shù)法就可解決問題;
2)只需求出點B的坐標,并運用數(shù)形結合的思想就可解決問題.

解:(1)設點A的坐標為(m,n).

∵點A在直線y=2x上,

n=2m

根據(jù)對稱性可得OA=OB,

SABC=2SACO=2,

SACO=m2m=1,

m=1(舍負).

∴點A的坐標為(12),

k=1×2=2

2)如圖,

由點A與點B關于點O成中心對稱得點B-1,-2). 結合圖象可得:自變量的取值范圍為x<-10<x<1

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=﹣x+b與反比例函數(shù)y的圖形交于Aa,4)和B41)兩點

1)求b,k的值;

2)若點Cx,y)也在反比例函數(shù)yx0)的圖象上,求當2x6時,函數(shù)值y的取值范圍;

3)將直線y=﹣x+b向下平移m個單位,當直線與雙曲線沒有交點時,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(問題發(fā)現(xiàn))

1)如圖1所示,在中,,,點上一點,作,于點,則________;

(類比研究)

2)將繞點順時針旋轉到圖2所示位置,此時(1)中的結論還成立嗎?請說明理由;

(拓展延伸)

3)若點邊中點,在繞點旋轉的過程中,當、、三點共線時,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系,點O是原點,直線yx+6分別交x軸,y軸于點BA,經(jīng)過點A的直線y=﹣x+bx軸于點 C

1)求b的值;

2)點D是線段AB上的一個動點,連接OD,過點OOEODAC于點E,連接DE,將△ODE沿DE折疊得到△FDE,連接AF.設點D的橫坐標為t,AF的長為d,當t>﹣3時,求dt之間的函數(shù)關系式(不要求寫出自變量t的取值范圍);

3)在(2)的條件下,DEOA于點G,且tanAGD3.點Hx軸上(點H在點O的右側),連接DH,EH,FH,當∠DHF=∠EHF時,請直接寫出點H的坐標,不需要寫出解題過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,線段AB4,MAB的中點,動點P到點M的距離是1,連接PB,線段PB繞點P逆時針旋轉90°得到線段PC,連接AC,則線段AC長度的最大值是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,反比例函數(shù)經(jīng)過兩點,過點軸于點,過點軸于點,過點作軸于點,連接,已知,則_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法:①一組對邊平行,另一組對邊相等的四邊形是平行四邊形;②經(jīng)過有交通信號燈的路口,遇到紅燈是必然事件;③若甲組數(shù)據(jù)的方差是,乙組數(shù)據(jù)的方差是,則甲數(shù)據(jù)比乙組數(shù)據(jù)穩(wěn)定;④圓內接正六邊形的邊長等于這個圓的半徑,其中正確說法的個數(shù)是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學數(shù)學興趣小組在全校范圍內隨機抽取了50名同學進行“舌尖上的中國我最喜愛的小吃”調查活動,將調查問卷整理后繪制成如圖所示的不完整條形統(tǒng)計圖:

調查問卷

在下面四種重慶小吃中,你最喜的是( )(單選)

A、燒雞 B、歡喜團 C、鍋子餅 D、蜜棗

請根據(jù)所給信息解答下列問題:

1)請補全條形統(tǒng)計圖;

2)若全校有2000名學生,請估計全校同學中最喜歡“燒雞”的同學有多少人.

3)在此次調查活動中,有32男共5名工作人員,若從中隨機選擇2名負責調查問卷的發(fā)放和回收工作,請用列表或畫樹狀圖的方法,求出這2名工作人員恰好是11女的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在由邊長為1的小正方形組成的網(wǎng)格圖中,有一個格點三角形ABC.(注:頂點均在網(wǎng)格線交點處的三角形稱為格點三角形.)

(1)ABC 三角形(填銳角”、“直角鈍角”);

(2)若P、Q分別為線段AB、BC上的動點,當PCPQ取得最小值時,

在網(wǎng)格中用無刻度的直尺,畫出線段PC、PQ.(請保留作圖痕跡.)

直接寫出PCPQ的最小值: .

查看答案和解析>>

同步練習冊答案