【題目】如圖,四邊形ABCD內(nèi)接于O

(1)連接AC、BD,若∠BAC=∠CAD60°,則△DBC的形狀為   

(2)(1)的條件下,試探究線段ADAB,AC之間的數(shù)量關(guān)系,并證明你的結(jié)論;

(3),∠DAB=∠ABC90°,點(diǎn)P上的一動(dòng)點(diǎn),連接PAPB,PD,求證:PDPB+PA

【答案】(1)等邊三角形;(2)ACAB+AD,理由見解析;(3)證明見解析.

【解析】

(1)利用等弧對(duì)等角,可以判斷出△DBC是等邊三角形;

(2)如圖1,在AC上截取AEAD,連接DE,利用等邊△DBC以及等邊對(duì)等角的關(guān)系,可以證得△DAB≌△DEC(SAS),可以證明ACAB+AD;

(3)如圖2,根據(jù)已知條件易證得四邊形ABCD是正方形,在PD上取DEBP,也同樣可證得△DAE≌△BAP(SAS),可證得PAE為等腰直角三角形,所以PEPA.

(1)∵∠BAC=∠BDC60°,∠CAD=∠CBD60°,

∴∠BDC=∠CBD=∠BCD60°,

∴△DBC是等邊三角形.

故答案為:等邊三角形.

(2)結(jié)論:ACAB+AD

理由:如圖1,在AC上截取AEAD,連接DE

∵∠DAE60°,ADAE,

∴△ADE是等邊三角形,

ADDE,∠ADE=∠BDC60°,

∴∠ADB=∠EDC,

DADE,DBDC,

∴△DAB≌△DEC(SAS)

ECAB,

DEAD

ACAE+ECAD+AB

(3)如圖2中,在PD上取DEBP,

∵∠DAB=∠ABC90°,

∴∠BCD=∠ADC90°,

∴四邊形ABCD是矩形,

ABBC,

∴四邊形ABCD是正方形,

DABD,∠ADE=∠ABF,DEBP,

∴△DAE≌△BAP(SAS),

AEAP,∠DAE=∠BAP

∴∠PAE=∠BAD90°,

PEPA

PDPBPDDEPEPA

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線yax2x+c經(jīng)過(guò)A(2,0)B(0,2)兩點(diǎn),動(dòng)點(diǎn)P,Q同時(shí)從原點(diǎn)出發(fā)均以1個(gè)單位/秒的速度運(yùn)動(dòng),動(dòng)點(diǎn)P沿x軸正方向運(yùn)動(dòng),動(dòng)點(diǎn)Q沿y軸正方向運(yùn)動(dòng),連接PQ,設(shè)運(yùn)動(dòng)時(shí)間為t

(1)求拋物線的解析式;

(2)當(dāng)BQAP時(shí),求t的值;

(3)隨著點(diǎn)P,Q的運(yùn)動(dòng),拋物線上是否存在點(diǎn)M,使△MPQ為等邊三角形?若存在,請(qǐng)求出t的值及相應(yīng)點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于平面直角坐標(biāo)系xOy中的點(diǎn)Pa,b),若點(diǎn)P′的坐標(biāo)為(a+kb,ka+b)(其中k為常數(shù),且k≠0),則稱點(diǎn)P′為點(diǎn)P“k屬派生點(diǎn)

如:P1,4)的“2屬派生點(diǎn)為P′1+2×4,2×1+4),即P′9,6);

1)點(diǎn)P-1,3)的“2屬派生點(diǎn)”P′的坐標(biāo)為______;

2)若點(diǎn)P“3屬派生點(diǎn)”P′的坐標(biāo)為(-1,3),則點(diǎn)P的坐標(biāo)為______

3)若點(diǎn)Px軸的正半軸上,點(diǎn)P“k屬派生點(diǎn)為點(diǎn)P′,線段PP′的長(zhǎng)度等于線段OP的長(zhǎng)度,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面內(nèi)的兩條直線l1l2,點(diǎn)A、B在直線l2上,過(guò)點(diǎn)AB兩點(diǎn)分別作直線l1的垂線,垂足分別為A1B1,我們把線段A1B1叫做線段AB在直線l2上的正投影,其長(zhǎng)度可記作TAB,CDTAB,l2,特別地,線段AC在直線l2上的正投影就是線段A1C,請(qǐng)依據(jù)上述定義解決如下問(wèn)題.

1)如圖1,在銳角ABC中,AB=5,TAC,AB=3,則TBCAB= ;

2)如圖2,在Rt△ABC中,∠ACB=90°,TAC,AB=4,TBC,AB=9,求△ABC的面積;

3)如圖3,在鈍角△ABC中,∠A=60°,點(diǎn)DAB邊上,∠ACD=90°,TAD,AC=2,TBC,AB=6,求TBC,CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知拋物線(0≤x≤3)在x軸上方的部分,記作C1,它與x軸交于點(diǎn)OA1,將C1繞點(diǎn)A1旋轉(zhuǎn)180°C2C2x 軸交于另一點(diǎn)A2.請(qǐng)繼續(xù)操作并探究:將C2繞點(diǎn)A2旋轉(zhuǎn)180°C3,與x 軸交于另一點(diǎn)A3;將C3繞點(diǎn)A2旋轉(zhuǎn)180°C4,與x 軸交于另一點(diǎn)A4,這樣依次得到x軸上的點(diǎn)A1,A2A3,,An,,及拋物線C1,C2,Cn.則點(diǎn)A4的坐標(biāo)為 ;Cn的頂點(diǎn)坐標(biāo)為 (n為正整數(shù),用含n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖①,BE,DFMN是三根直立于地面的木桿在同一燈光下的影子,請(qǐng)畫出第三根木桿,(畫出示意圖,不用寫畫法)

2)如圖②,小明在陽(yáng)光下利用標(biāo)桿AB測(cè)量校園內(nèi)一棵小樹CD的高度,在同一時(shí)刻測(cè)得標(biāo)桿的影長(zhǎng)BE2 m,小樹的影長(zhǎng)落在地面上的部分DM3 m,落在墻上的部分MN1 m,若標(biāo)桿AB的長(zhǎng)為1.5 m,求小樹的高度CD

圖① 圖②

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形中,聯(lián)結(jié),,,如果,那么______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠B=90°,AB=6 cm,BC=8 cm,若點(diǎn)P從點(diǎn)A沿AB邊向B點(diǎn)以1 cm/s的速度移動(dòng),點(diǎn)QB點(diǎn)沿BC邊向點(diǎn)C以2 cm/s的速度移動(dòng),兩點(diǎn)同時(shí)出發(fā).

(1)問(wèn)幾秒后,△PBQ的面積為8cm?

(2)出發(fā)幾秒后,線段PQ的長(zhǎng)為4cm ?

(3)△PBQ的面積能否為10 cm2?若能,求出時(shí)間;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為滿足市場(chǎng)需求,新生活超市在端午節(jié)前夕購(gòu)進(jìn)價(jià)格為3/個(gè)的某品牌粽子,根據(jù)市場(chǎng)預(yù)測(cè),該品牌粽子每個(gè)售價(jià)4元時(shí),每天能出售500個(gè),并且售價(jià)每上漲0.1元,其銷售量將減少10個(gè),為了維護(hù)消費(fèi)者利益,物價(jià)部門規(guī)定,該品牌粽子售價(jià)不能超過(guò)進(jìn)價(jià)的200%,請(qǐng)你利用所學(xué)知識(shí)幫助超市給該品牌粽子定價(jià),使超市每天的銷售利潤(rùn)為800元.

查看答案和解析>>

同步練習(xí)冊(cè)答案