【題目】(1)如圖①,BE,DF,MN是三根直立于地面的木桿在同一燈光下的影子,請(qǐng)畫(huà)出第三根木桿,(畫(huà)出示意圖,不用寫(xiě)畫(huà)法)
(2)如圖②,小明在陽(yáng)光下利用標(biāo)桿AB測(cè)量校園內(nèi)一棵小樹(shù)CD的高度,在同一時(shí)刻測(cè)得標(biāo)桿的影長(zhǎng)BE為2 m,小樹(shù)的影長(zhǎng)落在地面上的部分DM為3 m,落在墻上的部分MN為1 m,若標(biāo)桿AB的長(zhǎng)為1.5 m,求小樹(shù)的高度CD.
圖① 圖②
【答案】(1)見(jiàn)解析;(2) 小樹(shù)的高度CD為3.25 m.
【解析】
(1)連接EA與FC相交于一點(diǎn),連接該點(diǎn)與點(diǎn)N,過(guò)點(diǎn)M作MP垂直于這條直線(xiàn)于點(diǎn)P,PM即所求;
(2)根據(jù)同一時(shí)刻物體的高與影長(zhǎng)成正比,先求出小樹(shù)落在教學(xué)樓上的影長(zhǎng)落在地面上時(shí)的長(zhǎng)度,再根據(jù)小樹(shù)的高度與影長(zhǎng)的比等于標(biāo)桿的高度與影長(zhǎng)的比,列出比例式求解即可.
(1)連接EA與FC相交于一點(diǎn),連接該點(diǎn)與點(diǎn)N,過(guò)點(diǎn)M作MP垂直于這條直線(xiàn)于點(diǎn)P,
如圖,PM為第三根木桿.
(2)
解:由題意可知,.
即.
解得,,
由,得
.
解得.
答:小樹(shù)的高度CD為3.25 m.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小剛準(zhǔn)備進(jìn)行如下操作試驗(yàn):把一根長(zhǎng)為80cm的鐵絲剪成兩段,并把每一段各圍成一個(gè)正方形.要使這兩個(gè)正方形的面積之和等于272cm2,小剛該怎么剪?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=﹣2x2﹣4x+6.
(1)用配方法求出函數(shù)的頂點(diǎn)坐標(biāo);
(2)將該二次函數(shù)圖象向右平移幾個(gè)單位,可使平移后所得圖象經(jīng)過(guò)坐標(biāo)原點(diǎn)?并直接寫(xiě)出平移后所得圖象與x軸的另一個(gè)交點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,對(duì)于點(diǎn)P(x,y)和Q(x,y′),給出如下定義:若y′=,則稱(chēng)點(diǎn)Q為點(diǎn)P的“親密點(diǎn)”.例如:點(diǎn)(1,2)的“親密點(diǎn)”為點(diǎn)(1,3),點(diǎn)(﹣1,3)的“親密點(diǎn)”為點(diǎn)(﹣1,﹣3).若點(diǎn)P在函數(shù)y=x2﹣2x﹣3的圖象上,則其“親密點(diǎn)”Q的縱坐標(biāo)y′關(guān)于x的函數(shù)圖象大致正確的是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O.
(1)連接AC、BD,若∠BAC=∠CAD=60°,則△DBC的形狀為 .
(2)在(1)的條件下,試探究線(xiàn)段AD,AB,AC之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)若,∠DAB=∠ABC=90°,點(diǎn)P為上的一動(dòng)點(diǎn),連接PA,PB,PD,求證:PD=PB+PA.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB = 90°,BC = 6,AC = 8.點(diǎn)D是AB邊上一點(diǎn),過(guò)點(diǎn)D作DE // BC,交邊AC于E.過(guò)點(diǎn)C作CF // AB,交DE的延長(zhǎng)線(xiàn)于點(diǎn)F.
(1)如果,求線(xiàn)段EF的長(zhǎng);
(2)求∠CFE的正弦值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AD⊥BC于點(diǎn)D,點(diǎn)F為AB上一點(diǎn),連接CF,過(guò)點(diǎn)B作BE⊥BC交CF的延長(zhǎng)線(xiàn)于點(diǎn)E,交AD于點(diǎn)H,且∠1=∠2
(1)求證:AB=AC;
(2)若∠1=22°,∠AFC=110°,求∠BCE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】校園空地上有一面墻,長(zhǎng)度為20m,用長(zhǎng)為32m的籬笆和這面墻圍成一個(gè)矩形花圃,如圖所示.
(1)能?chē)擅娣e是126m2的矩形花圃嗎?若能,請(qǐng)舉例說(shuō)明;若不能,請(qǐng)說(shuō)明理由.
(2)若籬笆再增加4m,圍成的矩形花圃面積能達(dá)到170m2嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在菱形ABCD中,AB=4,∠BAD=120°,點(diǎn)E、F分別在菱形的邊BC、CD上運(yùn)動(dòng),且∠EAF=60°且E、F不與B、C、D重合,連接AC交EF于P點(diǎn).
(1)證明:不論E、F在BC、CD上如何運(yùn)動(dòng),總有BE=CF;
(2)當(dāng)BE=1時(shí),求AP的長(zhǎng);
(3)當(dāng)點(diǎn)E、F在BC、CD上滑動(dòng)時(shí),分別探討四邊形AECF和△CEF的面積是否發(fā)生變化?如果不變,直接寫(xiě)出這個(gè)定值;如果變化,是最大值還是最小值?并直接寫(xiě)出最大(或最小)值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com