【題目】已知:如圖,已知△ABC 中,其中 A(0,﹣2),B(2,﹣4),C(4,﹣1).

(1)畫出與△ABC 關(guān)于 y 軸對稱的圖形△A1B1C1;

(2)寫出△A1B1C1 各頂點坐標(biāo);

(3)求△ABC 的面積.

【答案】(1)見解析;(2)A1(0,﹣2),B1(﹣2,﹣4),C1(﹣4,﹣1);(3)5.

【解析】

(1)直接利用關(guān)于y軸對稱點的性質(zhì)得出對應(yīng)點位置進(jìn)而得出答案;

(2)直接利用(1)中所畫圖形得出對應(yīng)點坐標(biāo);

(3)利用△ABC所在矩形面積減去周圍三角形面積進(jìn)而得出答案.

解:(1)所作圖形如圖所示;

(2)A1(0,﹣2),B1(﹣2,﹣4),C1(﹣4,﹣1);

(3)S△ABC=3×4﹣×2×3﹣×4×1﹣×2×2=12﹣3﹣2﹣2=5.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖1,在AB直線一側(cè)CD兩點,在AB上找一點P,使C、D、P三點組成的三角形的周長最短,找出此點并說明理由.

2)如圖2,在AOB內(nèi)部有一點P,是否在OAOB上分別存在點E、F,使得E、FP三點組成的三角形的周長最短,找出E、F兩點,并說明理由.

3)如圖3,在AOB內(nèi)部有兩點MN,是否在OA、OB上分別存在點EF,使得E、FM、N,四點組成的四邊形的周長最短,找出EF兩點,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:

(1)15﹣(﹣8)+(﹣20)﹣12

(2)2×(﹣3)2﹣4×(﹣3)+15

(3)(﹣2+|﹣2|3

(4)﹣20+(﹣2)2﹣32+|﹣10|

(5)﹣22×2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小凡把果樹林分為兩部分,左地塊用新技術(shù)管理,右地塊用老方法管理,管理成本相同,她在左、右兩地塊上各隨機選取20棵果樹,按產(chǎn)品分成甲、乙、丙、丁四個等級(數(shù)據(jù)分組包括左端點不包括右端點),并制作如下兩幅不完整的統(tǒng)計圖:
(1)補齊左地塊統(tǒng)計圖,求右地塊乙級所對應(yīng)的圓心角的度數(shù);
(2)比較兩地塊的產(chǎn)量水平,并說明試驗結(jié)果;
(3)在左地塊隨機抽查一棵果樹,求該果樹產(chǎn)量為乙級的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC的三邊AB、BC、CA長分別是20、30、40,其三條角平分線將△ABC分為三個三角形,則SABOSBCOSCAO等于( )

A. 111

B. 123

C. 234

D. 345

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先閱讀理解下面的例題,再按要求解答下列問題:

例題:求代數(shù)式y2+4y+8的最小值.

解:y2+4y+8=y2+4y+4+4=(y+2)2+4

y+2)2≥0

y+2)2+4≥4

y2+4y+8的最小值是4.

(1)求代數(shù)式m2+m+4的最小值;

(2)求代數(shù)式4﹣x2+2x的最大值;

(3)某居民小區(qū)要在一塊一邊靠墻(墻長15m)的空地上建一個長方形花園ABCD,花園一邊靠墻,另三邊用總長為20m的柵欄圍成.如圖,設(shè)AB=x(m),請問:當(dāng)x取何值時,花園的面積最大?最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:

(1)5m-7n-8p+5n-9m-p;

(2)x4x5(-x7+5(x44-(x73÷x5.

【答案】(1)-4m-2n-9p;(2)3x16

【解析】

(1)先移項,再合并同類項;

(2)原式利用冪的乘方、同底數(shù)冪的乘法和除法法則計算,再合并即可得到結(jié)果.

(1)5m-7n-8p+5n-9m-p=5m-9m-7n+5n-8p-p=-4m-2n-9p;

(2)x4x5-x7+5x44-x73÷x5=- x4x5x7+5x16-x21÷x5=- x16 +5x16-x16=3x16

【點睛】

此題考查了冪的乘方、同底數(shù)冪的乘法、除法法則計算以及合并同類項,熟練掌握整式運算的有關(guān)法則是解答此題的關(guān)鍵.

型】解答
結(jié)束】
21

【題目】解方程(x-2)-(4x-1)=4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)已知a+b=5,ab=-2,求代數(shù)式(6a-3b-2ab)-(a-8b-ab)的值;

(2)已知2x-y-4=0,9x27y÷81y的值

【答案】(1)27;(2)81.

【解析】

(1)運用整式的加減運算順序先去括號,再合并同類項,根據(jù)乘法的分配律將5a+5b變形為5(a+b),最后代入求值即可;

(2)根據(jù)冪的乘方,可得同底數(shù)冪的乘法,根據(jù)同底數(shù)冪的乘法,可得答案.

(1)原式=6a-3b-2ab-a+8b+ab=5a+5b-ab=5(a+b)-ab,

當(dāng)a+b=5ab=-2時,

原式=5×5-(-2)=27;

(2)9x27y÷81y=32x33y÷34y=32x-y

2x-y-4=02x-y=4,

故原式=34=81.

【點睛】

本題考查了冪的乘方,同底數(shù)冪的乘法,整式的混合運算和求值的應(yīng)用,用了整體代入思想.

型】解答
結(jié)束】
23

【題目】根據(jù)要求完成下列題目:

(1)圖中有_____塊小正方體;

(2)請在下面方格紙中分別畫出它的主視圖、左視圖和俯視圖;

(3)用小正方體搭一幾何體,使得它的俯視圖和左視圖與你在圖方格中所畫的圖一致,若這樣的幾何體最少要m個小正方體,最多要n個小正方體,則m+n的值為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABGD中,AB=AD=6,梯形ABCD中,DE⊥DC交AB于E,DF平分∠EDC交BC于F,連結(jié)EF.
(1)證明:EF=CF;
(2)當(dāng) 時,求EF的長.

查看答案和解析>>

同步練習(xí)冊答案